1. Academic Validation
  2. Discovery of 2-((2-methylbenzyl)thio)-6-oxo-4-(3,4,5-trimethoxyphenyl)-1,6-dihydropyrimidine-5-carbonitrile as a novel and effective bromodomain and extra-terminal (BET) inhibitor for the treatment of sepsis

Discovery of 2-((2-methylbenzyl)thio)-6-oxo-4-(3,4,5-trimethoxyphenyl)-1,6-dihydropyrimidine-5-carbonitrile as a novel and effective bromodomain and extra-terminal (BET) inhibitor for the treatment of sepsis

  • Eur J Med Chem. 2022 Aug 5;238:114423. doi: 10.1016/j.ejmech.2022.114423.
Xuetao Chen 1 Fanying Meng 1 Jingtian Zhang 1 Zijian Zhang 1 Xuan Ye 1 Weikun Zhang 1 Yuanyuan Tong 1 Xinrui Ji 1 Rujun Xu 1 Xiao-Li Xu 2 Qi-Dong You 3 Zheng-Yu Jiang 4
Affiliations

Affiliations

  • 1 State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
  • 2 State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China. Electronic address: xuxiao_li@126.com.
  • 3 State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China. Electronic address: youqd@163.com.
  • 4 State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China. Electronic address: jiangzhengyucpu@163.com.
Abstract

Sepsis has long been a major health problem worldwide. It threatens the lives of hospitalized patients and has been one of the leading causes of death in hospitalized patients over the past decades. BRD4 has been regarded as a potential target for sepsis therapy, for its critical role in the transcriptional expression of NF-κB pathway-dependent inflammatory factors. In this study, compound 1 was obtained through virtual screening, and candidate compound 27 was obtained through several rounds of iterative SAR analysis. 27 decreased LPS-induced NO production and expression of the pro-inflammatory factors IL-6, IL-1β and TNF-α. In vivo, 27 effectively protected mice from LPS-induced sepsis, increased survival rate and decreased the level of pro-inflammatory factors in serum. Collectively, we reported here 27, a BRD4 Inhibitor with a new scaffold, as a potential candidate for the treatment of sepsis.

Keywords

BET; BRD4 inhibitor; Bromodomain; Sepsis.

Figures
Products