1. Academic Validation
  2. An autoinhibited state of 53BP1 revealed by small molecule antagonists and protein engineering

An autoinhibited state of 53BP1 revealed by small molecule antagonists and protein engineering

  • bioRxiv. 2023 Jul 18:2023.04.20.534960. doi: 10.1101/2023.04.20.534960.
Gaofeng Cui Maria Victoria Botuyan Pascal Drané Qi Hu Benoît Bragantini James R Thompson David J Schuller Alexandre Detappe Michael T Perfetti Lindsey I James Stephen V Frye Dipanjan Chowdhury Georges Mer
Abstract

The recruitment of 53BP1 to chromatin, mediated by its recognition of histone H4 dimethylated at lysine 20 (H4K20me2), is important for DNA double-strand break repair. Using a series of small molecule antagonists, we demonstrate a conformational equilibrium between an open and a pre-existing lowly populated closed state of 53BP1 in which the H4K20me2 binding surface is buried at the interface between two interacting 53BP1 molecules. In cells, these antagonists inhibit the chromatin recruitment of wild type 53BP1, but do not affect 53BP1 variants unable to access the closed conformation despite preservation of the H4K20me2 binding site. Thus, this inhibition operates by shifting the conformational equilibrium toward the closed state. Our work therefore identifies an auto-associated form of 53BP1 - autoinhibited for chromatin binding - that can be stabilized by small molecule ligands encapsulated between two 53BP1 protomers. Such ligands are valuable research tools to study the function of 53BP1 and have the potential to facilitate the development of new drugs for Cancer therapy.

Figures
Products
  • Cat. No.
    Product Name
    Description
    Target
    Research Area
  • HY-156906
    98.15%, 53BP1 Ligand