1. Academic Validation
  2. p38MAPK- and GSK3-Mediated Phosphorylation of Snakehead Vesiculovirus Phosphoprotein at Threonine 160 Facilitates Viral Replication

p38MAPK- and GSK3-Mediated Phosphorylation of Snakehead Vesiculovirus Phosphoprotein at Threonine 160 Facilitates Viral Replication

  • J Virol. 2023 May 10;e0040423. doi: 10.1128/jvi.00404-23.
Xiangmou Qin 1 Yong-An Zhang 1 Jiagang Tu 1
Affiliations

Affiliation

  • 1 State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China.
Abstract

Phosphoprotein (P), co-factor of the polymerase (large protein, L) of single-stranded negative-sense RNA viruses, is phosphorylated during viral Infection and its phosphorylation has been reported to play important roles in viral replication. However, the function of P phosphorylation in viral replication is still far from clear. Snakehead vesiculovirus (SHVV) is a kind of fish rhabdovirus that has caused serious economic losses in snakehead fish culture in China without any effective preventive or therapeutical measures currently. In this study, 4D label-free phosphoproteomics Sequencing of SHVV-infected cells identified five phosphorylated sites on SHVV P, among which threonine 160 (T160) was proved to be phosphorylated. Overexpression of wild-type P, but not P-T160A or P-T160E mutant, promoted SHVV replication, suggesting that the T160 phosphorylation on the P protein is critical for SHVV replication. Moreover, we found that T160A or T160E mutation on SHVV P had no effect on the interactions of P-nucleoprotein (N), P-P, or P-L. Further study revealed that p38 mitogen-activated protein kinase (p38MAPK) and glycogen synthase kinase 3 (GSK3) interacted with SHVV P and mediated the T160 phosphorylation. Besides, overexpression of p38MAPK or GSK3 facilitated, while knockdown or activity inhibition of p38MAPK or GSK3 suppressed, SHVV replication. Overall, p38MAPK- and GSK3-mediated phosphorylation of the P protein at T160 is required for SHVV replication, which provided targets for designing anti-SHVV drugs and developing live-attenuated SHVV vaccines. Our study helps understand the role of P phosphorylation in the replication of single-stranded negative-sense RNA viruses. IMPORTANCE Phosphorylation of Viral Proteins plays important roles in viral replication. Currently, the role of phosphorylation of phosphoprotein (P) in the replication of single-stranded negative-sense RNA viruses is far from clear. Identification of the phosphorylated sites on viral P protein and the related host kinases is helpful for developing live-attenuated vaccines and designing Antiviral drugs. This study focused on identifying the phosphorylated sites on P protein of a fish rhabdovirus SHVV, determining the related host kinases, and revealing the effects of the phosphorylated sites and kinases on SHVV replication. We found that SHVV P was phosphorylated at T160, which was mediated by the kinases p38MAPK and GSK3 to promote SHVV replication. This study is the first time to study the role of P phosphorylation in fish rhabdovirus replication.

Keywords

kinase; phosphoprotein; phosphorylation; replication; snakehead vesiculovirus.

Figures
Products
Inhibitors & Agonists