1. Academic Validation
  2. Depleted uranium induces thyroid damage through activation of ER stress via the thrombospondin 1-PERK pathway

Depleted uranium induces thyroid damage through activation of ER stress via the thrombospondin 1-PERK pathway

  • Chem Biol Interact. 2023 Jun 1;110592. doi: 10.1016/j.cbi.2023.110592.
Chang Shu 1 Jie Li 1 Suiyi Liu 1 Yong Li 1 Yonghong Ran 1 Yazhen Zhao 1 Juan Li 1 Yuhui Hao 2
Affiliations

Affiliations

  • 1 State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University, No.30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.
  • 2 State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University, No.30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China. Electronic address: yuhui_hao@126.com.
Abstract

Depleted uranium (DU) can cause damage to the body, but its effects on the thyroid are unclear. The purpose of this study was to investigate the DU-induced thyroid damage and its potential mechanism in order to find new targets for detoxification after DU poisoning. A model of acute exposure to DU was constructed in rats. It was observed that DU accumulated in the thyroid, induced thyroid structure disorder and cell Apoptosis, and decreased the serum T4 and FT4 levels. Gene screening showed that thrombospondin 1 (TSP-1) was a sensitive gene of DU, and the expression of TSP-1 decreased with the increase of DU exposure dose and time. TSP-1 knockout mice exposed to DU had more severe thyroid damage and lower serum FT4 and T4 levels than wild-type mice. Inhibiting the expression of TSP-1 in FRTL-5 cells aggravated DU-induced Apoptosis, while exogenous TSP-1 protein alleviated the decreased viability in FRTL-5 cells caused by DU. It was suggested that DU may caused thyroid damage by down-regulating TSP-1. It was also found that DU increased the expressions of PERK, CHOP, and Caspase-3, and 4-Phenylbutyric (4-PBA) alleviated the DU-induced FRTL-5 cell viability decline and the decrease levels of rat serum FT4 and T4 caused by DU. After DU exposure, the PERK expression was further up-regulated in TSP-1 knockout mice, and the increased expression of PERK was alleviated in TSP-1 over-expressed cells, as well as the increased expression of CHOP and Caspase-3. Further verification showed that inhibition of PERK expression could reduce the DU-induced increased expression of CHOP and Caspase-3. These findings shed light on the mechanism that DU may activate ER stress via the TSP 1-PERK pathway, thereby leading to thyroid damage, and suggest that TSP-1 may be a potential therapeutic target for DU-induced thyroid damage.

Keywords

ER Stress; PERK; Thrombospondin 1; Thyroid; Uranium.

Figures
Products
Inhibitors & Agonists
Other Products