1. Academic Validation
  2. Nifuratel reduces Salmonella survival in macrophages by extracellular and intracellular antibacterial activity

Nifuratel reduces Salmonella survival in macrophages by extracellular and intracellular antibacterial activity

  • Microbiol Spectr. 2023 Sep 21;11(5):e0514722. doi: 10.1128/spectrum.05147-22.
Tian Xie 1 2 Guifeng Liu 1 2 Jiayi Ma 1 2 Yaonan Wang 1 2 Ran Gao 1 2 Shizhong Geng 1 2 Xinan Jiao 1 2 Paul Barrow 3
Affiliations

Affiliations

  • 1 Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University , Yangzhou, China.
  • 2 Key Laboratory of Zoonoses of Jiangsu Province/Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University , Yangzhou, China.
  • 3 School of Veterinary Medicine, University of Surrey , Guildford, United Kingdom.
Abstract

Salmonella are intracellular Bacterial pathogens for which, as with many of the Other Enterobacteriaceae, Antibiotic resistance is becoming an increasing problem. New Antibiotics are being sought as recommended by the World Health Organization and Other international institutions. These must be able to penetrate macrophages, and infect the major host cells and the Salmonella-containing vacuole. This study reports screening a small library of Food and Drug Administration (FDA)-approved drugs for their Antibacterial effect in macrophages infected with a rapid-multiplying mutant of Salmonella Enteritidis. The most effective drug that was least toxic for macrophages was Nifuratel, a nitrofuran Antibiotic already in use for parasitic infections. In mice, it provided 60% protection after oral Infection with a lethal S. Enteritidis dose with reduced Bacterial numbers in the tissues. It was effective against different serovars, including multidrug-resistant strains of Salmonella Typhimurium, and in macrophages from different host species and against Listeria monocytogenes and Shigella flexneri. It reduced IL-10 and STAT3 production in infected macrophages which should increase the inflammatory response against Salmonella. IMPORTANCE Salmonella can keep long-term persistence in host's macrophages to evade cellular immune defense and Antibiotic attack and exit in some condition and reinfect to cause salmonellosis again. In addition to multidrug resistance, this Infection circle causes Salmonella clearance difficult in the host, and so there is a great need for new Antibacterial agents that reduce intramacrophage Salmonella survival to block endogenous Salmonella reinfection.

Keywords

Nifuratel; antimicrobial drug; intramacrophage Salmonella.

Figures
Products