1. Academic Validation
  2. Low-Cost Robotic Manipulation of Live Microtissues for Cancer Drug Testing

Low-Cost Robotic Manipulation of Live Microtissues for Cancer Drug Testing

  • bioRxiv. 2024 Aug 6:2024.03.21.586169. doi: 10.1101/2024.03.21.586169.
Ivan Stepanov Noah R Gottshall Alireza Ahmadianyazdi Daksh Sinha Ethan J Lockhart Tran N H Nguyen Sarmad Hassan Lisa F Horowitz Raymond S Yeung Taranjit S Gujral Albert Folch
Abstract

The scarcity of human biopsies available for drug testing is a paramount challenge for developing new therapeutics, disease models, and personalized treatments. Microtechnologies that combine the microscale manipulation of tissues and fluids offer the exciting possibility of miniaturizing both disease models and drug testing workflows on scarce human biopsies. Unfortunately, these technologies presently require microfluidic devices or robotic dispensers that are not widely accessible. We have rapidly-prototyped an inexpensive platform based on an off-the-shelf robot that can microfluidically manipulate live microtissues into/out of culture plates without using complicated accessories such as microscopes or pneumatic controllers. The robot integrates complex functions with a simple, cost-effective and compact construction, allowing placement inside a tissue culture hood for sterile workflows. We demonstrated a proof-of-concept Cancer drug evaluation workflow of potential clinical utility using patient tumor biopsies with multiple drugs on 384-well plates. Our user-friendly, low-cost platform promises to make drug testing of microtissues broadly accessible to pharmaceutical, clinical, and biological laboratories.

Teaser: A low-cost robot for handling microtissues and catalyzing their use in Cancer drug evaluation and personalized oncology.

Figures
Products