1. Academic Validation
  2. Limosilactobacillus-related 3-OMDP as a potential therapeutic target for depression

Limosilactobacillus-related 3-OMDP as a potential therapeutic target for depression

  • Ann Med. 2024 Dec;56(1):2417179. doi: 10.1080/07853890.2024.2417179.
Qi Zhong 1 Wentao Wu 1 Jing Xie 2 Jiao-Lin Wang 1 Ke Xu 3 4 Yi Ren 3 4 Jianjun Chen 1 Peng Xie 3 4
Affiliations

Affiliations

  • 1 Institute of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China.
  • 2 Chongqing Emergency Medical Center, Central Hospital of Chongqing University, Chongqing, China.
  • 3 Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
  • 4 National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
Abstract

Objective: Gut microbiota was closely involved in the pathogenesis of depression, but the underlying molecular mechanisms in depression remained unclear. This study was conducted to investigate the relationship between neurotransmitters/inflammatory factors and gut microbiota in depressed mice.

Materials and methods: A chronic social defeat stress (CSDS) depression model was established. Gut microbial composition was detected in faeces, neurotransmitters were detected in faeces, colon, blood and hippocampus, and inflammatory factors were detected in hippocampus. After a key neurotransmitter was identified, intervention experiment was conducted to explore whether it could improve depressive-like behaviours.

Results: Six differential genera in faeces, 14 differential neurotransmitters in gut-brain axis, and two differential inflammatory factors (interleukin-1 beta (IL-1β) and interleukin-6 (IL-6)) in hippocampus were identified in depressed mice. There were significant correlations among differential genera, differential neurotransmitters and IL-1β/IL-6. Among these differential neurotransmitters, 3-O-Methyldopa (3-OMDP) was found to be consistently decreased in faeces, colon, blood and hippocampus, and 3-OMDP was significantly correlated to Limosilactobacillus and IL-1β. After receiving 3-OMDP, the depressive-like behaviours in depressed mice were improved and the increased IL-1β/IL-6 levels were reversed.

Conclusions: These results indicated that gut microbiota might affect host's inflammation levels in brain through regulating neurotransmitters, eventually leading to the onset of depression. 'Limosilactobacillus-3-OMDP-IL-1β/IL-6' might be a potential pathway in the crosstalk of gut and brain, and 3-OMDP held the promise as a therapeutic target for depression.

Keywords

Depression; gut microbiota; inflammatory; neurotransmitters.

Figures
Products