1. Academic Validation
  2. Synthesis and biological evaluation of novel pyrrolo[2,3-b]pyridine derivatives as potent GSK-3β inhibitors for treating Alzheimer's disease

Synthesis and biological evaluation of novel pyrrolo[2,3-b]pyridine derivatives as potent GSK-3β inhibitors for treating Alzheimer's disease

  • Eur J Med Chem. 2025 Mar 5:285:117236. doi: 10.1016/j.ejmech.2025.117236.
Qing-Qing Xun 1 Jing Zhang 2 Yan-Peng Li 3 Ying Li 2 Yu-Ying Ma 2 Zhao-Bin Chen 4 Le-Ping Ding 4 Xiao-Long Shi 5
Affiliations

Affiliations

  • 1 Medical Research Center, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China; School of Clinical Medicine, Jining Medical University, Jining, Shandong, China.
  • 2 Medical Research Center, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China.
  • 3 Department of Spinal Surgery, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China.
  • 4 School of Clinical Medicine, Jining Medical University, Jining, Shandong, China.
  • 5 Medical Research Center, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China. Electronic address: sxlmm0924@163.com.
Abstract

The development of potent glycogen synthase kinase-3β (GSK-3β) inhibitor has been increasingly recognized as the candidate treatment against the multifactorial pathogenic mechanism of Alzheimer's disease (AD). This study prepared various new pyrrolo[2,3-b]pyridine derivatives, evaluated the anti-AD activities and detected the security based on the structure-guided rational design. Our results indicated that many pyrrolo[2,3-b]pyridine derivatives had strong GSK-3β inhibitory activities, particularly compounds 41, 46 and 54, with the half maximal inhibitory concentrations (IC50) of 0.22, 0.26 and 0.24 nM, respectively, and each of them generally possessed GSK-3β selectivity over 24 structurally similar kinases. In addition, further targeting studies at the cellular level revealed that compound 41 increased GSK-3β phosphorylation at Ser9 site dose-dependently for inhibiting GSK-3β activity, therefore inhibiting the hyperphosphorylation of Tau Protein by decreasing the p-tau-Ser396 abundance. Moreover, 41 up-regulated β-catenin and neurogenesis-related markers (GAP43 and MAP-2), thereby promoting neurite outgrowth of neurons in SH-SY5Y cells. According to the in vitro cells assay, 41 showed the lower cytotoxicity to SH-SY5Y cells with a survival rate of over 70 % at the concentration of 100 μM. In vivo efficacy and acute toxicity experiments showed that, 41 effectively ameliorated the dyskinesia in AlCl3-induced zebrafish AD models and exhibited its low-toxicity nature in C57BL/6 mice. Overall, the pyrrolo[2,3-b]pyridine derivative 41 could serve as a promising GSK-3β Inhibitor for treating AD.

Keywords

Alzheimer's disease; GSK-3β inhibitor; Neurite outgrowth; Tau hyperphosphorylation; pyrrolo[2,3-b]pyridine.

Figures
Products