1. Academic Validation
  2. Irsogladine maleate inhibits angiogenesis in wild-type and plasminogen activator-deficient mice

Irsogladine maleate inhibits angiogenesis in wild-type and plasminogen activator-deficient mice

  • J Surg Res. 1998 Jul 1;77(2):126-31. doi: 10.1006/jsre.1998.5381.
C J Ren 1 F Ueda D F Roses M N Harris P Mignatti D B Rifkin R L Shapiro
Affiliations

Affiliation

  • 1 Department of Surgery, New York University School of Medicine, New York, New York, 10016, USA.
Abstract

Background: The activation of the zymogen plasminogen to the serine Protease plasmin by urokinase-type (uPA) and tissue-type (tPA) plasminogen activators (PA) is an important event in a variety of physiologic and pathophysiologic processes in mammals. Enhanced PA activity occurs during angiogenesis and has been correlated in vitro and in vivo with increased tumor aggressiveness and is an indicator of poor prognosis in a variety of tumors in humans. Preliminary studies suggest that the antiulcer drug irsogladine maleate (IM) diminishes PA activity in vitro and may inhibit angiogenesis in vivo. To define the precise mechanism of angiogenesis inhibition by IM in vivo, we tested the ability of IM to blunt angiogenesis in a mouse cornea neovascularization model performed in wild-type and PA-knockout mice.

Methods: Three days prior to pellet implantation, groups of C57Bl/6 wild-type, uPA-deficient (upA-/-), and tPA-deficient (tPA-/-) mice received IM (300 mg/kg), IM (500 mg/kg), or vehicle (0.5% carboxymethylcellulose) via oral gavage. After 3 days of treatment, hydron polymer-coated pellets of sucrose aluminum sulfate containing 100 ng of basic Fibroblast Growth Factor (bFGF) were inserted into surgically created pockets in the cornea of each mouse. On postoperative day 6, the neovascularization of each cornea was evaluated by a blinded observer using slit lamp microscopy and photographed. Angiogenesis was quantified by calculating vascular area (mm2) +/- SEM using a modified formula for a half ellipse that incorporates calibrated vessel measurements [Vessel length (mm) x Clock hours x pi x 0.2].

Results: IM treatment (300 and 500 mg/kg/day) resulted in a dose-dependent reduction of angiogenesis in wild-type mice by 21 and 45.3% (P < 0.02, P < 0.001), in tPA-deficient mice by 42.6 and 46% (P < 0.001, P < 0.001), and in uPA-deficient mice by 27.2 and 46% (P < 0.05, p < 0.001), respectively. No quantitative differences in neovascularization were observed in either treatment group between transgenic mouse strains. No toxicity was noted in any group.

Conclusion: IM inhibits bFGF-induced angiogenesis in wild-type, tPA-knockout, and uPA-knockout mice. The observation that IM significantly diminishes angiogenesis in both PA-deficient mice and wild-type mice suggests that the mechanism of action of IM may be independent of plasminogen activation.

Figures
Products