1. Metabolic Enzyme/Protease GPCR/G Protein Epigenetics Cell Cycle/DNA Damage Apoptosis Immunology/Inflammation
  2. Phosphodiesterase (PDE) Adenosine Receptor HDAC Apoptosis Interleukin Related TNF Receptor Endogenous Metabolite
  3. Theophylline monohydrate

Theophylline monohydrate  (Synonyms: 1,3-Dimethylxanthine monohydrate; Theo-24 monohydrate)

Cat. No.: HY-B0809A
Handling Instructions

Theophylline (1,3-Dimethylxanthine) monohydrate is a potent phosphodiesterase (PDE) inhibitor, adenosine receptor antagonist, and histone deacetylase (HDAC) activator. Theophylline (1,3-Dimethylxanthine) monohydrate inhibits PDE3 activity to relax airway smooth muscle. Theophylline (1,3-Dimethylxanthine) monohydrate has anti-inflammatory activity by increase IL-10 and inhibit NF-κB into the nucleus. Theophylline (1,3-Dimethylxanthine) monohydrate induces apoptosis. Theophylline (1,3-Dimethylxanthine) monohydrate can be used for asthma and chronic obstructive pulmonary disease (COPD) research.

For research use only. We do not sell to patients.

Theophylline monohydrate Chemical Structure

Theophylline monohydrate Chemical Structure

CAS No. : 5967-84-0

Size Stock
50 mg   Get quote  
100 mg   Get quote  
250 mg   Get quote  
Synthetic products have potential research and development risk.

* Please select Quantity before adding items.

This product is a controlled substance and not for sale in your territory.

Other In-stock Forms of Theophylline monohydrate:

Other Forms of Theophylline monohydrate:

Top Publications Citing Use of Products
  • Biological Activity

  • Purity & Documentation

  • References

  • Customer Review

Description

Theophylline (1,3-Dimethylxanthine) monohydrate is a potent phosphodiesterase (PDE) inhibitor, adenosine receptor antagonist, and histone deacetylase (HDAC) activator. Theophylline (1,3-Dimethylxanthine) monohydrate inhibits PDE3 activity to relax airway smooth muscle. Theophylline (1,3-Dimethylxanthine) monohydrate has anti-inflammatory activity by increase IL-10 and inhibit NF-κB into the nucleus. Theophylline (1,3-Dimethylxanthine) monohydrate induces apoptosis. Theophylline (1,3-Dimethylxanthine) monohydrate can be used for asthma and chronic obstructive pulmonary disease (COPD) research[1][2][3][4][5].

IC50 & Target

IL-10

 

IL-6

 

PDE3

 

Human Endogenous Metabolite

 

In Vitro

Theophylline (1,3-Dimethylxanthine) monohydrate (1-1000 μM) inhibits cAMP hydrolysis by PDE in homogenates of bronchial tissue to relax human bronchus and pulmonary arteries[1].
Theophylline (1,3-Dimethylxanthine) monohydrate (10 μg/mL; 24 h; eosinophils) induces apoptosis through a reduction in the antiapoptotic protein Bcl-2[2].
Theophylline (1,3-Dimethylxanthine) monohydrate (0-500 μM; 2 h; A549 cells) inhibits NF-κB activation, I kappa B alpha (I-κBα) degradation and decreases the level of IL-6 in a concentration-dependent manner[3].
Theophylline (1,3-Dimethylxanthine) monohydrate (0-1000 μM; 30 min; A549 cells) induces histone deacetylase activity to decrease inflammatory gene expression[4].

MedChemExpress (MCE) has not independently confirmed the accuracy of these methods. They are for reference only.

Western Blot Analysis[3]

Cell Line: A549 cells
Concentration: 0, 20, 100 and 500 µM
Incubation Time: 2 hours
Result: Decreased the expression of NF-κB p65 and I-κBα degradation in a concentration-dependent manner.

Western Blot Analysis[2]

Cell Line: Eosinophils
Concentration: 10 µg/mL
Incubation Time: 24 hours
Result: Decreased the expression of Bcl-2.
In Vivo

Theophylline (1,3-Dimethylxanthine) (100 mg/kg; i.p.; daily, for 9 d; male Swiss mice) has anti-inflammatory activity in mice and increases IL-6 and IL-10 levels and inhibits TNF-α and NO[1].

MedChemExpress (MCE) has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Model: Male Swiss mice[1]
Dosage: 100 mg/kg
Administration: Intraperitoneal injection; daily, for 9 days
Result: Increased IL-6 and IL-10 levels and inhibited TNF-α and NO.
Clinical Trial
Molecular Weight

198.18

Formula

C7H10N4O3

CAS No.
SMILES

O=C1C2=C(N(C)C(N1C)=O)N=CN2.O

Structure Classification
Initial Source
Shipping

Room temperature in continental US; may vary elsewhere.

Storage

Please store the product under the recommended conditions in the Certificate of Analysis.

Purity & Documentation
References
  • No file chosen (Maximum size is: 1024 Kb)
  • If you have published this work, please enter the PubMed ID.
  • Your name will appear on the site.
  • Molarity Calculator

  • Dilution Calculator

The molarity calculator equation

Mass (g) = Concentration (mol/L) × Volume (L) × Molecular Weight (g/mol)

Mass   Concentration   Volume   Molecular Weight *
= × ×

The dilution calculator equation

Concentration (start) × Volume (start) = Concentration (final) × Volume (final)

This equation is commonly abbreviated as: C1V1 = C2V2

Concentration (start) × Volume (start) = Concentration (final) × Volume (final)
× = ×
C1   V1   C2   V2
Help & FAQs
  • Do most proteins show cross-species activity?

    Species cross-reactivity must be investigated individually for each product. Many human cytokines will produce a nice response in mouse cell lines, and many mouse proteins will show activity on human cells. Other proteins may have a lower specific activity when used in the opposite species.

Your Recently Viewed Products:

Inquiry Online

Your information is safe with us. * Required Fields.

Product Name

 

Salutation

Applicant Name *

 

Email Address *

Phone Number *

 

Organization Name *

Department *

 

Requested quantity *

Country or Region *

     

Remarks

Bulk Inquiry

Inquiry Information

Product Name:
Theophylline monohydrate
Cat. No.:
HY-B0809A
Quantity:
MCE Japan Authorized Agent: