1. Academic Validation
  2. Discovery of glycine hydrazide pore-occluding CFTR inhibitors: mechanism, structure-activity analysis, and in vivo efficacy

Discovery of glycine hydrazide pore-occluding CFTR inhibitors: mechanism, structure-activity analysis, and in vivo efficacy

  • J Gen Physiol. 2004 Aug;124(2):125-37. doi: 10.1085/jgp.200409059.
Chatchai Muanprasat 1 N D Sonawane Danieli Salinas Alessandro Taddei Luis J V Galietta A S Verkman
Affiliations

Affiliation

  • 1 Department of Medicine, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143-0521, USA.
Abstract

The cystic fibrosis transmembrane conductance regulator (CFTR) protein is a cAMP-regulated epithelial Cl- channel that, when defective, causes cystic fibrosis. Screening of a collection of 100,000 diverse small molecules revealed four novel chemical classes of CFTR inhibitors with Ki < 10 microM, one of which (glycine hydrazides) had many active structural analogues. Analysis of a series of synthesized glycine hydrazide analogues revealed maximal inhibitory potency for N-(2-naphthalenyl) and 3,5-dibromo-2,4-dihydroxyphenyl substituents. The compound N-(2-naphthalenyl)-[(3,5-dibromo-2,4-dihydroxyphenyl)methylene]glycine hydrazide (GlyH-101) reversibly inhibited CFTR Cl- conductance in <1 min. Whole-cell current measurements revealed voltage-dependent CFTR block by GlyH-101 with strong inward rectification, producing an increase in apparent inhibitory constant Ki from 1.4 microM at +60 mV to 5.6 microM at -60 mV. Apparent potency was reduced by lowering extracellular Cl- concentration. Patch-clamp experiments indicated fast channel closures within bursts of channel openings, reducing mean channel open time from 264 to 13 ms (-60 mV holding potential, 5 microM GlyH-101). GlyH-101 inhibitory potency was independent of pH from 6.5-8.0, where it exists predominantly as a monovalent anion with solubility approximately 1 mM in water. Topical GlyH-101 (10 microM) in mice rapidly and reversibly inhibited forskolin-induced hyperpolarization in nasal potential differences. In a closed-loop model of cholera, intraluminal GlyH-101 (2.5 microg) reduced by approximately 80% cholera toxin-induced intestinal fluid secretion. Compared with the thiazolidinone CFTR inhibitor CFTR(inh)-172, GlyH-101 has substantially greater water solubility and rapidity of action, and a novel inhibition mechanism involving occlusion near the external pore entrance. Glycine hydrazides may be useful as probes of CFTR pore structure, in creating animal models of CF, and as antidiarrheals in enterotoxic-mediated secretory diarrheas.

Figures
Products