1. Academic Validation
  2. Novel bipharmacophoric inhibitors of the cholinesterases with affinity to the muscarinic receptors M1 and M2

Novel bipharmacophoric inhibitors of the cholinesterases with affinity to the muscarinic receptors M1 and M2

  • Medchemcomm. 2017 Apr 27;8(6):1346-1359. doi: 10.1039/c7md00149e.
Regina Messerer 1 Clelia Dallanoce 2 Carlo Matera 2 Sarah Wehle 1 Lisa Flammini 3 Brian Chirinda 4 Andreas Bock 5 Matthias Irmen 4 Christian Tränkle 4 Elisabetta Barocelli 3 Michael Decker 1 Christoph Sotriffer 1 Marco De Amici 2 Ulrike Holzgrabe 1
Affiliations

Affiliations

  • 1 Pharmaceutical and Medicinal Chemistry , Institute of Pharmacy and Food Chemistry , University of Würzburg , Am Hubland , 97074 Würzburg , Germany . Email: ulrike.holzgrabe@uni-wuerzburg.de ; ; Tel: +49 931 31 85460.
  • 2 Dipartimento di Scienze Farmaceutiche , Sezione di Chimica Farmaceutica "Pietro Pratesi" , Università degli Studi di Milano , Via Mangiagalli 25 , 20133 Milano , Italy.
  • 3 Dipartimento di Farmacia , Università degli Studi di Parma , Parco Area delle Scienze, 27/A , 43124 Parma , Italy.
  • 4 Pharmacology and Toxicology , Institute of Pharmacy , University of Bonn , Gerhard-Domagk-Straße 3 , 53121 Bonn , Germany.
  • 5 Institute of Pharmacology and Toxicology , University of Würzburg , Versbacher Strasse 9 , 97078 Würzburg , Germany.
Abstract

A set of hybrid compounds composed of the fragment of allosteric modulators of the muscarinic receptor, i.e. W84 and naphmethonium, and the well-known AChE Inhibitor tacrine on the one hand, and the skeletons of the orthosteric muscarinic agonists, iperoxo and isox, on the Other hand, were synthesized. The two molecular moieties were connected via a polymethylene linker of varying length. These bipharmacophoric compounds were investigated for inhibition of AChE (from electric eel) and BChE (from equine serum) as well as human ChEs in vitro and compared to previously synthesized dimeric inhibitors. Among the studied hybrids, compound 10-C10, characterized by a 10 carbon alkylene linker connecting tacrine and iperoxo, proved to be the most potent inhibitor with the highest pIC50 values of 9.81 (AChE from electric eel) and 8.75 (BChE from equine serum). Docking experiments with compounds 10-C10, 7b-C10, and 7a-C10 helped to interpret the experimental inhibitory power against AChE, which is affected by the nature of the allosteric molecular moiety, with the tacrine-containing hybrid being much more active than the naphthalimido- and phthalimido-containing analogs. Furthermore, the most active AChE inhibitors were found to have affinity to M1 and M2 muscarinic receptors. Since 10-C10 showed almost no cytotoxicity, it emerged as a promising lead structure for the development of an anti-Alzheimer drug.

Figures