1. Academic Validation
  2. Deletion of Lymphangiogenic and Angiogenic Growth Factor VEGF-D Leads to Severe Hyperlipidemia and Delayed Clearance of Chylomicron Remnants

Deletion of Lymphangiogenic and Angiogenic Growth Factor VEGF-D Leads to Severe Hyperlipidemia and Delayed Clearance of Chylomicron Remnants

  • Arterioscler Thromb Vasc Biol. 2018 Oct;38(10):2327-2337. doi: 10.1161/ATVBAHA.118.311549.
Annakaisa Tirronen 1 Taina Vuorio 1 Sanna Kettunen 1 Krista Hokkanen 1 Bastian Ramms 2 3 Henri Niskanen 1 Hanne Laakso 1 Minna U Kaikkonen 1 Matti Jauhiainen 4 Philip L S M Gordts 2 5 Seppo Ylä-Herttuala 1 6
Affiliations

Affiliations

  • 1 From the A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (A.T., T.V., S.K., K.H., H.N., H.L., M.U.K., S.Y.-H.).
  • 2 Division of Endocrinology and Metabolism, Department of Medicine (B.R., P.L.S.M.G.), University of California San Diego, La Jolla, CA.
  • 3 Department of Chemistry, Biochemistry I, Bielefeld University, Germany (B.R.).
  • 4 Genomics and Biomarkers Unit, National Institute for Health and Welfare, Biomedicum, Helsinki, Finland (M.J.).
  • 5 Glycobiology Research and Training Center (P.L.S.M.G.), University of California San Diego, La Jolla, CA.
  • 6 Heart Center and Gene Therapy Unit, Kuopio University Hospital, Finland (S.Y.-H.).
Abstract

Objective- Dyslipidemia is one of the key factors behind coronary heart disease. Blood and lymphatic vessels play pivotal roles in both lipoprotein metabolism and development of atherosclerotic plaques. Recent studies have linked members of VEGF (vascular endothelial growth factor) family to lipid metabolism, but the function of VEGF-D has remained unexplored. Here, we investigated how the deletion of VEGF-D affects lipid and lipoprotein metabolism in atherogenic LDLR-/- apoB100/100 mice. Approach and Results- Deletion of VEGF-D (VEGF-D-/-LDLR-/-apoB100/100) led to markedly elevated plasma Cholesterol and triglyceride levels without an increase in atherogenesis. Size distribution and hepatic lipid uptake studies confirmed a delayed clearance of large chylomicron remnant particles that cannot easily penetrate through the vascular endothelium. Mechanistically, the inhibition of VEGF-D signaling significantly decreased the hepatic expression of SDC1 (syndecan 1), which is one of the main receptors for chylomicron remnant uptake when LDLR is absent. Immunohistochemical staining confirmed reduced expression of SDC1 in the sinusoidal surface of hepatocytes in VEGF-D deficient mice. Furthermore, hepatic RNA-sequencing revealed that VEGF-D is also an important regulator of genes related to lipid metabolism and inflammation. The lack of VEGF-D signaling via VEGFR3/Flt-4 (VEGF receptor 3) led to lowered expression of genes regulating triglyceride and Cholesterol production, as well as downregulation of peroxisomal β-oxidation pathway. Conclusions- These results demonstrate that VEGF-D, a powerful lymphangiogenic and angiogenic growth factor, is also a major regulator of chylomicron metabolism in mice.

Keywords

cholesterol; chylomicron remnants; hyperlipidemia; triglyceride; vascular endothelial growth factor D.

Figures
Products