1. Academic Validation
  2. Environmentally relevant exposure to TBBPA and its analogues may not drastically affect human early cardiac development

Environmentally relevant exposure to TBBPA and its analogues may not drastically affect human early cardiac development

  • Environ Pollut. 2022 Aug 1;306:119467. doi: 10.1016/j.envpol.2022.119467.
Miaomiao Zhao 1 Nuoya Yin 2 Renjun Yang 1 Shichang Li 1 Shuxian Zhang 1 Francesco Faiola 1
Affiliations

Affiliations

  • 1 State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
  • 2 State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China. Electronic address: nyyin@rcees.ac.cn.
Abstract

Tetrabromobisphenol A (TBBPA) and its substitutes and derivatives have been widely used as halogenated flame retardants (HFRs), in the past few decades. As a consequence, these compounds are frequently detected in the environment, as well as human bodily fluids, especially umbilical cord blood and breast milk. This has raised awareness of their potential risks to fetuses and infants. In this study, we employed human embryonic stem cell differentiation models to assess the potential developmental toxicity of six TBBPA-like compounds, at human relevant nanomolar concentrations. To mimic early embryonic development, we utilized embryoid body-based 3D differentiation in presence of the six HFRs. Transcriptomics data showed that HFR exposure over 16 days of differentiation only interfered with the expression of a few genes, indicating those six HFRs may not have specific tissue/organ targets during embryonic development. Nevertheless, further analyses revealed that some cardiac-related genes were dysregulated. Since the heart is also the first organ to develop, we employed a cardiac differentiation model to analyze the six HFRs' potential developmental toxicity in more depth. Overall, HFRs of interest did not significantly disturb the canonical Wnt pathway, which is an essential signal transduction pathway for cardiac development. In addition, the six HFRs showed only mild changes in gene expression levels for cardiomyocyte markers, such as NKX2.5, MYH7, and MYL4, as well as a significant down-regulation of some but not all the epicardial and smooth muscle cell markers selected. Taken together, our results show that the six studied HFRs, at human relevant concentrations, may impose negligible effects on embryogenesis and heart development. Nevertheless, higher exposure doses might affect the early stages of heart development.

Keywords

Cardiomyocyte differentiation; Developmental toxicity; Embryoid bodies (EBs); Halogenated flame retardants (HFRs); Human embryonic stem cells (hESCs).

Figures
Products