1. Academic Validation
  2. Co-exposure of decabromodiphenyl ethane and polystyrene nanoplastics damages grass carp (Ctenopharyngodon idella) hepatocytes: Focus on the role of oxidative stress, ferroptosis, and inflammatory reaction

Co-exposure of decabromodiphenyl ethane and polystyrene nanoplastics damages grass carp (Ctenopharyngodon idella) hepatocytes: Focus on the role of oxidative stress, ferroptosis, and inflammatory reaction

  • Sci Total Environ. 2024 Aug 25:940:173575. doi: 10.1016/j.scitotenv.2024.173575.
Bendong Shi 1 Tong Xu 2 Ting Chen 2 Shiwen Xu 3 Yujie Yao 4
Affiliations

Affiliations

  • 1 School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, PR China; College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
  • 2 College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
  • 3 College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
  • 4 School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, PR China. Electronic address: yujieyao@hainanu.edu.cn.
Abstract

Decabromodiphenyl ethane (DBDPE) and polystyrene nanoplastics (PS-NPs) are emerging pollutants that seriously threaten the ecological safety of the aquatic environment. However, the hepatotoxicity effect of their combined exposure on aquatic organisms has not been reported to date. In, this study, the effects of single or co-exposure of DBDPE and PS-NPs on grass carp hepatocytes were explored and biomarkers related to oxidative stress, Ferroptosis, and inflammatory cytokines were evaluated. The results show that both single and co-exposure to DBDPE and PS-NPs caused oxidative stress. Oxidative stress was induced by increasing the contents of pro-oxidation factors (ROS, MDA, and LPO), inhibiting the activity of antioxidant Enzymes (CAT, GPX, T-SOD, GSH, and T-AOC), and downregulating the mRNA expressions of antioxidant genes (GPX1, GSTO1, SOD1, and CAT); the effects of combined exposure were stronger overall. Both single and co-exposure to DBDPE and PS-NPs also elevated Fe2+ content, promoted the expressions of TFR1, STEAP3, and NCOA4, and inhibited the expressions of FTH1, SLC7A11, GCLC, GSS, and GPX4; these effects resulted in iron overload-induced Ferroptosis, where co-exposure had stronger adverse effects on ferroptosis-related biomarkers than single exposure. Moreover, single or co-exposure enhanced inflammatory cytokine levels, as evidenced by increased mRNA expressions of IL-6, IL-12, IL-17, IL-18, IL-1β, TNF-α, IFN-γ, and MPO. Co-exposure exhibited higher expression of pro-inflammatory cytokines compared to single exposure. Interestingly, the Ferroptosis inhibitor ferrostatin-1 intervention diminished the above changes. In brief, the results suggest that DBDPE and PS-NPs trigger elevated levels of inflammatory cytokines in grass crap hepatocytes. This elevation is achieved via oxidative stress and iron overload-mediated Ferroptosis, where cytotoxicity was stronger under co-exposure compared to single exposure. Overall, the findings contribute to elucidating the potential hepatotoxicity mechanisms in aquatic organisms caused by co-exposure to DBDPE and PS-NPs.

Keywords

Decabromodiphenyl ethane; Ferroptosis; Grass carp hepatocytes; Inflammatory cytokines; Oxidative stress; Polystyrene nanoplastics.

Figures
Products