Search Result
Results for "
Polylactic acid
" in MedChemExpress (MCE) Product Catalog:
215
Biochemical Assay Reagents
1
Isotope-Labeled Compounds
Cat. No. |
Product Name |
Target |
Research Areas |
Chemical Structure |
- HY-167460
-
|
Biochemical Assay Reagents
|
Others
|
PLLA1000-PEG3000-N3 is a polylactic acid derivative used for encapsulating hydrophobic drugs. PLLA1000-PEG3000-N3 can be used in drug delivery research .
|
-
- HY-167461
-
|
Biochemical Assay Reagents
|
Others
|
PLLA1000-PEG2000-N3 is a polylactic acid derivative used for encapsulating hydrophobic drugs. PLLA1000-PEG2000-N3 can be used in drug delivery research .
|
-
- HY-167462
-
|
Biochemical Assay Reagents
|
Others
|
PLLA1000-PEG1000-N3 is a polylactic acid derivative used for encapsulating hydrophobic drugs. PLLA1000-PEG1000-N3 can be used in drug delivery research .
|
-
- HY-167463
-
|
Biochemical Assay Reagents
|
Others
|
PLLA10000-PEG5000-N3 is a polylactic acid derivative used for encapsulating hydrophobic drugs. PLLA10000-PEG5000-N3 can be used in drug delivery research .
|
-
- HY-167464
-
|
Biochemical Assay Reagents
|
Others
|
PLLA10000-PEG3000-N3 is a polylactic acid derivative used for encapsulating hydrophobic drugs. PLLA10000-PEG3000-N3 can be used in drug delivery research .
|
-
- HY-167465
-
|
Biochemical Assay Reagents
|
Others
|
PLLA10000-PEG2000-N3 is a polylactic acid derivative used for encapsulating hydrophobic drugs. PLLA10000-PEG2000-N3 can be used in drug delivery research .
|
-
- HY-167466
-
|
Biochemical Assay Reagents
|
Others
|
PLLA10000-PEG1000-N3 is a polylactic acid derivative used for encapsulating hydrophobic drugs. PLLA10000-PEG1000-N3 can be used in drug delivery research .
|
-
- HY-167469
-
|
Biochemical Assay Reagents
|
Others
|
PLLA5000-PEG5000-RhB is a terminal rhodamine-labeled polylactic acid derivative. PLLA5000-PEG5000-RhB can be used to label nanomicelles for real-time monitoring of drug release in vivo .
|
-
- HY-167470
-
|
Biochemical Assay Reagents
|
Others
|
PLLA5000-PEG3000-RhB is a terminal rhodamine-labeled polylactic acid derivative. PLLA5000-PEG3000-RhB can be used to label nanomicelles for real-time monitoring of drug release in vivo .
|
-
- HY-167471
-
|
Biochemical Assay Reagents
|
Others
|
PLLA5000-PEG2000-RhB is a terminal rhodamine-labeled polylactic acid derivative. PLLA5000-PEG2000-RhB can be used to label nanomicelles for real-time monitoring of drug release in vivo .
|
-
- HY-167472
-
|
Biochemical Assay Reagents
|
Others
|
PLLA5000-PEG1000-RhB is a terminal rhodamine-labeled polylactic acid derivative. PLLA5000-PEG1000-RhB can be used to label nanomicelles for real-time monitoring of drug release in vivo .
|
-
- HY-167473
-
|
Biochemical Assay Reagents
|
Others
|
PLLA4000-PEG5000-RhB is a terminal rhodamine-labeled polylactic acid derivative. PLLA4000-PEG5000-RhB can be used to label nanomicelles for real-time monitoring of drug release in vivo .
|
-
- HY-167474
-
|
Biochemical Assay Reagents
|
Others
|
PLLA4000-PEG3000-RhB is a terminal rhodamine-labeled polylactic acid derivative. PLLA4000-PEG3000-RhB can be used to label nanomicelles for real-time monitoring of drug release in vivo .
|
-
- HY-167475
-
|
Biochemical Assay Reagents
|
Others
|
PLLA4000-PEG2000-RhB is a terminal rhodamine-labeled polylactic acid derivative. PLLA4000-PEG2000-RhB can be used to label nanomicelles for real-time monitoring of drug release in vivo .
|
-
- HY-167476
-
|
Biochemical Assay Reagents
|
Others
|
PLLA4000-PEG1000-RhB is a terminal rhodamine-labeled polylactic acid derivative. PLLA4000-PEG1000-RhB can be used to label nanomicelles for real-time monitoring of drug release in vivo .
|
-
- HY-167477
-
|
Biochemical Assay Reagents
|
Others
|
PLLA3000-PEG5000-RhB is a terminal rhodamine-labeled polylactic acid derivative. PLLA3000-PEG5000-RhB can be used to label nanomicelles for real-time monitoring of drug release in vivo .
|
-
- HY-167478
-
|
Biochemical Assay Reagents
|
Others
|
PLLA3000-PEG3000-RhB is a terminal rhodamine-labeled polylactic acid derivative. PLLA3000-PEG3000-RhB can be used to label nanomicelles for real-time monitoring of drug release in vivo .
|
-
- HY-167479
-
|
Biochemical Assay Reagents
|
Others
|
PLLA3000-PEG2000-RhB is a terminal rhodamine-labeled polylactic acid derivative. PLLA3000-PEG2000-RhB can be used to label nanomicelles for real-time monitoring of drug release in vivo .
|
-
- HY-167480
-
|
Biochemical Assay Reagents
|
Others
|
PLLA3000-PEG1000-RhB is a terminal rhodamine-labeled polylactic acid derivative. PLLA3000-PEG1000-RhB can be used to label nanomicelles for real-time monitoring of drug release in vivo .
|
-
- HY-167481
-
|
Biochemical Assay Reagents
|
Others
|
PLLA2000-PEG5000-RhB is a terminal rhodamine-labeled polylactic acid derivative. PLLA2000-PEG5000-RhB can be used to label nanomicelles for real-time monitoring of drug release in vivo .
|
-
- HY-167482
-
|
Biochemical Assay Reagents
|
Others
|
PLLA2000-PEG3000-RhB is a terminal rhodamine-labeled polylactic acid derivative. PLLA2000-PEG3000-RhB can be used to label nanomicelles for real-time monitoring of drug release in vivo .
|
-
- HY-167483
-
|
Biochemical Assay Reagents
|
Others
|
PLLA2000-PEG2000-RhB is a terminal rhodamine-labeled polylactic acid derivative. PLLA2000-PEG2000-RhB can be used to label nanomicelles for real-time monitoring of drug release in vivo .
|
-
- HY-167484
-
|
Biochemical Assay Reagents
|
Others
|
PLLA2000-PEG1000-RhB is a terminal rhodamine-labeled polylactic acid derivative. PLLA2000-PEG1000-RhB can be used to label nanomicelles for real-time monitoring of drug release in vivo .
|
-
- HY-167485
-
|
Biochemical Assay Reagents
|
Others
|
PLLA1000-PEG5000-RhB is a terminal rhodamine-labeled polylactic acid derivative. PLLA1000-PEG5000-RhB can be used to label nanomicelles for real-time monitoring of drug release in vivo .
|
-
- HY-167486
-
|
Biochemical Assay Reagents
|
Others
|
PLLA1000-PEG3000-RhB is a terminal rhodamine-labeled polylactic acid derivative. PLLA1000-PEG3000-RhB can be used to label nanomicelles for real-time monitoring of drug release in vivo .
|
-
- HY-167487
-
|
Biochemical Assay Reagents
|
Others
|
PLLA1000-PEG2000-RhB is a terminal rhodamine-labeled polylactic acid derivative. PLLA1000-PEG2000-RhB can be used to label nanomicelles for real-time monitoring of drug release in vivo .
|
-
- HY-167488
-
|
Biochemical Assay Reagents
|
Others
|
PLLA1000-PEG1000-RhB is a terminal rhodamine-labeled polylactic acid derivative. PLLA1000-PEG1000-RhB can be used to label nanomicelles for real-time monitoring of drug release in vivo .
|
-
- HY-167489
-
|
Biochemical Assay Reagents
|
Others
|
PLLA10000-PEG5000-RhB is a terminal rhodamine-labeled polylactic acid derivative. PLLA10000-PEG5000-RhB can be used to label nanomicelles for real-time monitoring of drug release in vivo .
|
-
- HY-167490
-
|
Biochemical Assay Reagents
|
Others
|
PLLA10000-PEG3000-RhB is a terminal rhodamine-labeled polylactic acid derivative. PLLA10000-PEG3000-RhB can be used to label nanomicelles for real-time monitoring of drug release in vivo .
|
-
- HY-167491
-
|
Biochemical Assay Reagents
|
Others
|
PLLA10000-PEG2000-RhB is a terminal rhodamine-labeled polylactic acid derivative. PLLA10000-PEG2000-RhB can be used to label nanomicelles for real-time monitoring of drug release in vivo .
|
-
- HY-167492
-
|
Biochemical Assay Reagents
|
Others
|
PLLA10000-PEG1000-RhB is a terminal rhodamine-labeled polylactic acid derivative. PLLA10000-PEG1000-RhB can be used to label nanomicelles for real-time monitoring of drug release in vivo .
|
-
- HY-167294
-
|
Biochemical Assay Reagents
|
Others
|
PLLA5000-PEG5000-Thiol is a polylactic acid derivative that forms micelles in water and initiates biodegradation by attacking ester bonds through hydrolysis. PLLA5000-PEG5000-Thiol can be used in drug delivery research .
|
-
- HY-167295
-
|
Biochemical Assay Reagents
|
Others
|
PLLA5000-PEG3000-Thiol is a polylactic acid derivative that forms micelles in water and initiates biodegradation by attacking ester bonds through hydrolysis. PLLA5000-PEG3000-Thiol can be used in drug delivery research .
|
-
- HY-167296
-
|
Biochemical Assay Reagents
|
Others
|
PLLA5000-PEG2000-Thiol is a polylactic acid derivative that forms micelles in water and initiates biodegradation by attacking ester bonds through hydrolysis. PLLA5000-PEG2000-Thiol can be used in drug delivery research .
|
-
- HY-167297
-
|
Biochemical Assay Reagents
|
Others
|
PLLA5000-PEG1000-Thiol is a polylactic acid derivative that forms micelles in water and initiates biodegradation by attacking ester bonds through hydrolysis. PLLA5000-PEG1000-Thiol can be used in drug delivery research .
|
-
- HY-167298
-
|
Biochemical Assay Reagents
|
Others
|
PLLA4000-PEG5000-Thiol is a polylactic acid derivative that forms micelles in water and initiates biodegradation by attacking ester bonds through hydrolysis. PLLA4000-PEG5000-Thiol can be used in drug delivery research .
|
-
- HY-167299
-
|
Biochemical Assay Reagents
|
Others
|
PLLA4000-PEG3000-Thiol is a polylactic acid derivative that forms micelles in water and initiates biodegradation by attacking ester bonds through hydrolysis. PLLA4000-PEG3000-Thiol can be used in drug delivery research .
|
-
- HY-167300
-
|
Biochemical Assay Reagents
|
Others
|
PLLA4000-PEG2000-Thiol is a polylactic acid derivative that forms micelles in water and initiates biodegradation by attacking ester bonds through hydrolysis. PLLA4000-PEG2000-Thiol can be used in drug delivery research .
|
-
- HY-167301
-
|
Biochemical Assay Reagents
|
Others
|
PLLA4000-PEG1000-Thiol is a polylactic acid derivative that forms micelles in water and initiates biodegradation by attacking ester bonds through hydrolysis. PLLA4000-PEG1000-Thiol can be used in drug delivery research .
|
-
- HY-167302
-
|
Biochemical Assay Reagents
|
Others
|
PLLA3000-PEG5000-Thiol is a polylactic acid derivative that forms micelles in water and initiates biodegradation by attacking ester bonds through hydrolysis. PLLA3000-PEG5000-Thiol can be used in drug delivery research .
|
-
- HY-167303
-
|
Biochemical Assay Reagents
|
Others
|
PLLA3000-PEG3000-Thiol is a polylactic acid derivative that forms micelles in water and initiates biodegradation by attacking ester bonds through hydrolysis. PLLA3000-PEG3000-Thiol can be used in drug delivery research .
|
-
- HY-167304
-
|
Biochemical Assay Reagents
|
Others
|
PLLA3000-PEG2000-Thiol is a polylactic acid derivative that forms micelles in water and initiates biodegradation by attacking ester bonds through hydrolysis. PLLA3000-PEG2000-Thiol can be used in drug delivery research .
|
-
- HY-167305
-
|
Biochemical Assay Reagents
|
Others
|
PLLA3000-PEG1000-Thiol is a polylactic acid derivative that forms micelles in water and initiates biodegradation by attacking ester bonds through hydrolysis. PLLA3000-PEG1000-Thiol can be used in drug delivery research .
|
-
- HY-167306
-
|
Biochemical Assay Reagents
|
Others
|
PLLA2000-PEG5000-Thiol is a polylactic acid derivative that forms micelles in water and initiates biodegradation by attacking ester bonds through hydrolysis. PLLA2000-PEG5000-Thiol can be used in drug delivery research .
|
-
- HY-167307
-
|
Biochemical Assay Reagents
|
Others
|
PLLA2000-PEG3000-Thiol is a polylactic acid derivative that forms micelles in water and initiates biodegradation by attacking ester bonds through hydrolysis. PLLA2000-PEG3000-Thiol can be used in drug delivery research .
|
-
- HY-167308
-
|
Biochemical Assay Reagents
|
Others
|
PLLA2000-PEG2000-Thiol is a polylactic acid derivative that forms micelles in water and initiates biodegradation by attacking ester bonds through hydrolysis. PLLA2000-PEG2000-Thiol can be used in drug delivery research .
|
-
- HY-167309
-
|
Biochemical Assay Reagents
|
Others
|
PLLA2000-PEG1000-Thiol is a polylactic acid derivative that forms micelles in water and initiates biodegradation by attacking ester bonds through hydrolysis. PLLA2000-PEG1000-Thiol can be used in drug delivery research .
|
-
- HY-167310
-
|
Biochemical Assay Reagents
|
Others
|
PLLA1000-PEG5000-Thiol is a polylactic acid derivative that forms micelles in water and initiates biodegradation by attacking ester bonds through hydrolysis. PLLA1000-PEG5000-Thiol can be used in drug delivery research .
|
-
- HY-167311
-
|
Biochemical Assay Reagents
|
Others
|
PLLA1000-PEG3000-Thiol is a polylactic acid derivative that forms micelles in water and initiates biodegradation by attacking ester bonds through hydrolysis. PLLA1000-PEG3000-Thiol can be used in drug delivery research .
|
-
- HY-167312
-
|
Biochemical Assay Reagents
|
Others
|
PLLA1000-PEG2000-Thiol is a polylactic acid derivative that forms micelles in water and initiates biodegradation by attacking ester bonds through hydrolysis. PLLA1000-PEG2000-Thiol can be used in drug delivery research .
|
-
- HY-167313
-
|
Biochemical Assay Reagents
|
Others
|
PLLA1000-PEG1000-Thiol is a polylactic acid derivative that forms micelles in water and initiates biodegradation by attacking ester bonds through hydrolysis. PLLA1000-PEG1000-Thiol can be used in drug delivery research .
|
-
- HY-167314
-
|
Biochemical Assay Reagents
|
Others
|
PLLA10000-PEG5000-Thiol is a polylactic acid derivative that forms micelles in water and initiates biodegradation by attacking ester bonds through hydrolysis. PLLA10000-PEG5000-Thiol can be used in drug delivery research .
|
-
- HY-167315
-
|
Biochemical Assay Reagents
|
Others
|
PLLA10000-PEG3000-Thiol is a polylactic acid derivative that forms micelles in water and initiates biodegradation by attacking ester bonds through hydrolysis. PLLA10000-PEG3000-Thiol can be used in drug delivery research .
|
-
- HY-167316
-
|
Biochemical Assay Reagents
|
Others
|
PLLA10000-PEG2000-Thiol is a polylactic acid derivative that forms micelles in water and initiates biodegradation by attacking ester bonds through hydrolysis. PLLA10000-PEG2000-Thiol can be used in drug delivery research .
|
-
- HY-167317
-
|
Biochemical Assay Reagents
|
Others
|
PLLA10000-PEG1000-Thiol is a polylactic acid derivative that forms micelles in water and initiates biodegradation by attacking ester bonds through hydrolysis. PLLA10000-PEG1000-Thiol can be used in drug delivery research .
|
-
- HY-167318
-
|
Biochemical Assay Reagents
|
Others
|
PLLA5000-PEG5000-SPDP is a polylactic acid derivative that can form micelles in water and the SPDP moiety can react with thiols. PLLA5000-PEG5000-SPDP can be used in drug delivery research .
|
-
- HY-167319
-
|
Biochemical Assay Reagents
|
Others
|
PLLA5000-PEG3000-SPDP is a polylactic acid derivative that can form micelles in water and the SPDP moiety can react with thiols. PLLA5000-PEG3000-SPDP can be used in drug delivery research .
|
-
- HY-167320
-
|
Biochemical Assay Reagents
|
Others
|
PLLA5000-PEG2000-SPDP is a polylactic acid derivative that can form micelles in water and the SPDP moiety can react with thiols. PLLA5000-PEG2000-SPDP can be used in drug delivery research .
|
-
- HY-167321
-
|
Biochemical Assay Reagents
|
Others
|
PLLA5000-PEG1000-SPDP is a polylactic acid derivative that can form micelles in water and the SPDP moiety can react with thiols. PLLA5000-PEG1000-SPDP can be used in drug delivery research .
|
-
- HY-167322
-
|
Biochemical Assay Reagents
|
Others
|
PLLA4000-PEG5000-SPDP is a polylactic acid derivative that can form micelles in water and the SPDP moiety can react with thiols. PLLA4000-PEG5000-SPDP can be used in drug delivery research .
|
-
- HY-167323
-
|
Biochemical Assay Reagents
|
Others
|
PLLA4000-PEG3000-SPDP is a polylactic acid derivative that can form micelles in water and the SPDP moiety can react with thiols. PLLA4000-PEG3000-SPDP can be used in drug delivery research .
|
-
- HY-167324
-
|
Biochemical Assay Reagents
|
Others
|
PLLA4000-PEG2000-SPDP is a polylactic acid derivative that can form micelles in water and the SPDP moiety can react with thiols. PLLA4000-PEG2000-SPDP can be used in drug delivery research .
|
-
- HY-167325
-
|
Biochemical Assay Reagents
|
Others
|
PLLA4000-PEG1000-SPDP is a polylactic acid derivative that can form micelles in water and the SPDP moiety can react with thiols. PLLA4000-PEG1000-SPDP can be used in drug delivery research .
|
-
- HY-167326
-
|
Biochemical Assay Reagents
|
Others
|
PLLA3000-PEG5000-SPDP is a polylactic acid derivative that can form micelles in water and the SPDP moiety can react with thiols. PLLA3000-PEG5000-SPDP can be used in drug delivery research .
|
-
- HY-167327
-
|
Biochemical Assay Reagents
|
Others
|
PLLA3000-PEG3000-SPDP is a polylactic acid derivative that can form micelles in water and the SPDP moiety can react with thiols. PLLA3000-PEG3000-SPDP can be used in drug delivery research .
|
-
- HY-167328
-
|
Biochemical Assay Reagents
|
Others
|
PLLA3000-PEG2000-SPDP is a polylactic acid derivative that can form micelles in water and the SPDP moiety can react with thiols. PLLA3000-PEG2000-SPDP can be used in drug delivery research .
|
-
- HY-167329
-
|
Biochemical Assay Reagents
|
Others
|
PLLA3000-PEG1000-SPDP is a polylactic acid derivative that can form micelles in water and the SPDP moiety can react with thiols. PLLA3000-PEG1000-SPDP can be used in drug delivery research .
|
-
- HY-167330
-
|
Biochemical Assay Reagents
|
Others
|
PLLA2000-PEG5000-SPDP is a polylactic acid derivative that can form micelles in water and the SPDP moiety can react with thiols. PLLA2000-PEG5000-SPDP can be used in drug delivery research .
|
-
- HY-167331
-
|
Biochemical Assay Reagents
|
Others
|
PLLA2000-PEG3000-SPDP is a polylactic acid derivative that can form micelles in water and the SPDP moiety can react with thiols. PLLA2000-PEG3000-SPDP can be used in drug delivery research .
|
-
- HY-167332
-
|
Biochemical Assay Reagents
|
Others
|
PLLA2000-PEG2000-SPDP is a polylactic acid derivative that can form micelles in water and the SPDP moiety can react with thiols. PLLA2000-PEG2000-SPDP can be used in drug delivery research .
|
-
- HY-167333
-
|
Biochemical Assay Reagents
|
Others
|
PLLA2000-PEG1000-SPDP is a polylactic acid derivative that can form micelles in water and the SPDP moiety can react with thiols. PLLA2000-PEG1000-SPDP can be used in drug delivery research .
|
-
- HY-167334
-
|
Biochemical Assay Reagents
|
Others
|
PLLA1000-PEG5000-SPDP is a polylactic acid derivative that can form micelles in water and the SPDP moiety can react with thiols. PLLA1000-PEG5000-SPDP can be used in drug delivery research .
|
-
- HY-167335
-
|
Biochemical Assay Reagents
|
Others
|
PLLA1000-PEG3000-SPDP is a polylactic acid derivative that can form micelles in water and the SPDP moiety can react with thiols. PLLA1000-PEG3000-SPDP can be used in drug delivery research .
|
-
- HY-167336
-
|
Biochemical Assay Reagents
|
Others
|
PLLA1000-PEG2000-SPDP is a polylactic acid derivative that can form micelles in water and the SPDP moiety can react with thiols. PLLA1000-PEG2000-SPDP can be used in drug delivery research .
|
-
- HY-167337
-
|
Biochemical Assay Reagents
|
Others
|
PLLA1000-PEG1000-SPDP is a polylactic acid derivative that can form micelles in water and the SPDP moiety can react with thiols. PLLA1000-PEG1000-SPDP can be used in drug delivery research .
|
-
- HY-167338
-
|
Biochemical Assay Reagents
|
Others
|
PLLA10000-PEG5000-SPDP is a polylactic acid derivative that can form micelles in water and the SPDP moiety can react with thiols. PLLA10000-PEG5000-SPDP can be used in drug delivery research .
|
-
- HY-167339
-
|
Biochemical Assay Reagents
|
Others
|
PLLA10000-PEG3000-SPDP is a polylactic acid derivative that can form micelles in water and the SPDP moiety can react with thiols. PLLA10000-PEG3000-SPDP can be used in drug delivery research .
|
-
- HY-167340
-
|
Biochemical Assay Reagents
|
Others
|
PLLA10000-PEG2000-SPDP is a polylactic acid derivative that can form micelles in water and the SPDP moiety can react with thiols. PLLA10000-PEG2000-SPDP can be used in drug delivery research .
|
-
- HY-167341
-
|
Biochemical Assay Reagents
|
Others
|
PLLA10000-PEG1000-SPDP is a polylactic acid derivative that can form micelles in water and the SPDP moiety can react with thiols. PLLA10000-PEG1000-SPDP can be used in drug delivery research .
|
-
- HY-167417
-
|
Biochemical Assay Reagents
|
Others
|
PLLA5000-PEG5000-NH2 is a block copolymer based on polylactic acid derivatives that can self-assemble in water. PLLA5000-PEG5000-NH2 can be used in drug delivery research .
|
-
- HY-167418
-
|
Biochemical Assay Reagents
|
Others
|
PLLA5000-PEG3000-NH2 is a block copolymer based on polylactic acid derivatives that can self-assemble in water. PLLA5000-PEG3000-NH2 can be used in drug delivery research .
|
-
- HY-167419
-
|
Biochemical Assay Reagents
|
Others
|
PLLA5000-PEG2000-NH2 is a block copolymer based on polylactic acid derivatives that can self-assemble in water. PLLA5000-PEG2000-NH2 can be used in drug delivery research .
|
-
- HY-167420
-
|
Biochemical Assay Reagents
|
Others
|
PLLA5000-PEG1000-NH2 is a block copolymer based on polylactic acid derivatives that can self-assemble in water. PLLA5000-PEG1000-NH2 can be used in drug delivery research .
|
-
- HY-167421
-
|
Biochemical Assay Reagents
|
Others
|
PLLA4000-PEG5000-NH2 is a block copolymer based on polylactic acid derivatives that can self-assemble in water. PLLA4000-PEG5000-NH2 can be used in drug delivery research .
|
-
- HY-167422
-
|
Biochemical Assay Reagents
|
Others
|
PLLA4000-PEG3000-NH2 is a block copolymer based on polylactic acid derivatives that can self-assemble in water. PLLA4000-PEG3000-NH2 can be used in drug delivery research .
|
-
- HY-167423
-
|
Biochemical Assay Reagents
|
Others
|
PLLA4000-PEG2000-NH2 is a block copolymer based on polylactic acid derivatives that can self-assemble in water. PLLA4000-PEG2000-NH2 can be used in drug delivery research .
|
-
- HY-167424
-
|
Biochemical Assay Reagents
|
Others
|
PLLA4000-PEG1000-NH2 is a block copolymer based on polylactic acid derivatives that can self-assemble in water. PLLA4000-PEG1000-NH2 can be used in drug delivery research .
|
-
- HY-167425
-
|
Biochemical Assay Reagents
|
Others
|
PLLA3000-PEG5000-NH2 is a block copolymer based on polylactic acid derivatives that can self-assemble in water. PLLA3000-PEG5000-NH2 can be used in drug delivery research .
|
-
- HY-167426
-
|
Biochemical Assay Reagents
|
Others
|
PLLA3000-PEG3000-NH2 is a block copolymer based on polylactic acid derivatives that can self-assemble in water. PLLA3000-PEG3000-NH2 can be used in drug delivery research .
|
-
- HY-167427
-
|
Biochemical Assay Reagents
|
Others
|
PLLA3000-PEG2000-NH2 is a block copolymer based on polylactic acid derivatives that can self-assemble in water. PLLA3000-PEG2000-NH2 can be used in drug delivery research .
|
-
- HY-167428
-
|
Biochemical Assay Reagents
|
Others
|
PLLA3000-PEG1000-NH2 is a block copolymer based on polylactic acid derivatives that can self-assemble in water. PLLA3000-PEG1000-NH2 can be used in drug delivery research .
|
-
- HY-167429
-
|
Biochemical Assay Reagents
|
Others
|
PLLA30000-PEG5000-NH2 is a block copolymer based on polylactic acid derivatives that can self-assemble in water. PLLA30000-PEG5000-NH2 can be used in drug delivery research .
|
-
- HY-167430
-
|
Biochemical Assay Reagents
|
Others
|
PLLA2000-PEG5000-NH2 is a block copolymer based on polylactic acid derivatives that can self-assemble in water. PLLA2000-PEG5000-NH2 can be used in drug delivery research .
|
-
- HY-167431
-
|
Biochemical Assay Reagents
|
Others
|
PLLA2000-PEG3000-NH2 is a block copolymer based on polylactic acid derivatives that can self-assemble in water. PLLA2000-PEG3000-NH2 can be used in drug delivery research .
|
-
- HY-167432
-
|
Biochemical Assay Reagents
|
Others
|
PLLA2000-PEG2000-NH2 is a block copolymer based on polylactic acid derivatives that can self-assemble in water. PLLA2000-PEG2000-NH2 can be used in drug delivery research .
|
-
- HY-167433
-
|
Biochemical Assay Reagents
|
Others
|
PLLA2000-PEG1000-NH2 is a block copolymer based on polylactic acid derivatives that can self-assemble in water. PLLA2000-PEG1000-NH2 can be used in drug delivery research .
|
-
- HY-167434
-
|
Biochemical Assay Reagents
|
Others
|
PLLA20000-PEG5000-NH2 is a block copolymer based on polylactic acid derivatives that can self-assemble in water. PLLA20000-PEG5000-NH2 can be used in drug delivery research .
|
-
- HY-167435
-
|
Biochemical Assay Reagents
|
Others
|
PLLA1000-PEG5000-NH2 is a block copolymer based on polylactic acid derivatives that can self-assemble in water. PLLA1000-PEG5000-NH2 can be used in drug delivery research .
|
-
- HY-167436
-
|
Biochemical Assay Reagents
|
Others
|
PLLA1000-PEG3000-NH2 is a block copolymer based on polylactic acid derivatives that can self-assemble in water. PLLA1000-PEG3000-NH2 can be used in drug delivery research .
|
-
- HY-167437
-
|
Biochemical Assay Reagents
|
Others
|
PLLA1000-PEG2000-NH2 is a block copolymer based on polylactic acid derivatives that can self-assemble in water. PLLA1000-PEG2000-NH2 can be used in drug delivery research .
|
-
- HY-167438
-
|
Biochemical Assay Reagents
|
Others
|
PLLA1000-PEG1000-NH2 is a block copolymer based on polylactic acid derivatives that can self-assemble in water. PLLA1000-PEG1000-NH2 can be used in drug delivery research .
|
-
- HY-167439
-
|
Biochemical Assay Reagents
|
Others
|
PLLA10000-PEG5000-NH2 is a block copolymer based on polylactic acid derivatives that can self-assemble in water. PLLA10000-PEG5000-NH2 can be used in drug delivery research .
|
-
- HY-167440
-
|
Biochemical Assay Reagents
|
Others
|
PLLA10000-PEG3000-NH2 is a block copolymer based on polylactic acid derivatives that can self-assemble in water. PLLA10000-PEG3000-NH2 can be used in drug delivery research .
|
-
- HY-167441
-
|
Biochemical Assay Reagents
|
Others
|
PLLA10000-PEG2000-NH2 is a block copolymer based on polylactic acid derivatives that can self-assemble in water. PLLA10000-PEG2000-NH2 can be used in drug delivery research .
|
-
- HY-167442
-
|
Biochemical Assay Reagents
|
Others
|
PLLA10000-PEG1000-NH2 is a block copolymer based on polylactic acid derivatives that can self-assemble in water. PLLA10000-PEG1000-NH2 can be used in drug delivery research .
|
-
- HY-167370
-
|
Biochemical Assay Reagents
|
Others
|
PLLA5000-PEG5000-BIO is a polylactic acid derivative that can form micelles in water. In addition, PLLA5000-PEG5000-BIO can bind tightly to avidin or streptavidin for protein labeling. PLLA5000-PEG5000-BIO can be used in drug delivery research .
|
-
- HY-167371
-
|
Biochemical Assay Reagents
|
Others
|
PLLA5000-PEG2000-BIO is a polylactic acid derivative that can form micelles in water. In addition, PLLA5000-PEG2000-BIO can bind tightly to avidin or streptavidin for protein labeling. PLLA5000-PEG2000-BIO can be used in drug delivery research .
|
-
- HY-167372
-
|
Biochemical Assay Reagents
|
Others
|
PLLA5000-PEG1000-BIO is a polylactic acid derivative that can form micelles in water. In addition, PLLA5000-PEG1000-BIO can bind tightly to avidin or streptavidin for protein labeling. PLLA5000-PEG1000-BIO can be used in drug delivery research .
|
-
- HY-167373
-
|
Biochemical Assay Reagents
|
Others
|
PLLA4000-PEG5000-BIO is a polylactic acid derivative that can form micelles in water. In addition, PLLA4000-PEG5000-BIO can bind tightly to avidin or streptavidin for protein labeling. PLLA4000-PEG5000-BIO can be used in drug delivery research .
|
-
- HY-167374
-
|
Biochemical Assay Reagents
|
Others
|
PLLA4000-PEG2000-BIO is a polylactic acid derivative that can form micelles in water. In addition, PLLA4000-PEG2000-BIO can bind tightly to avidin or streptavidin for protein labeling. PLLA4000-PEG2000-BIO can be used in drug delivery research .
|
-
- HY-167375
-
|
Biochemical Assay Reagents
|
Others
|
PLLA4000-PEG1000-BIO is a polylactic acid derivative that can form micelles in water. In addition, PLLA4000-PEG1000-BIO can bind tightly to avidin or streptavidin for protein labeling. PLLA4000-PEG1000-BIO can be used in drug delivery research .
|
-
- HY-167376
-
|
Biochemical Assay Reagents
|
Others
|
PLLA3000-PEG5000-BIO is a polylactic acid derivative that can form micelles in water. In addition, PLLA3000-PEG5000-BIO can bind tightly to avidin or streptavidin for protein labeling. PLLA3000-PEG5000-BIO can be used in drug delivery research .
|
-
- HY-167377
-
|
Biochemical Assay Reagents
|
Others
|
PLLA3000-PEG2000-BIO is a polylactic acid derivative that can form micelles in water. In addition, PLLA3000-PEG2000-BIO can bind tightly to avidin or streptavidin for protein labeling. PLLA3000-PEG2000-BIO can be used in drug delivery research .
|
-
- HY-167378
-
|
Biochemical Assay Reagents
|
Others
|
PLLA3000-PEG1000-BIO is a polylactic acid derivative that can form micelles in water. In addition, PLLA3000-PEG1000-BIO can bind tightly to avidin or streptavidin for protein labeling. PLLA3000-PEG1000-BIO can be used in drug delivery research .
|
-
- HY-167379
-
|
Biochemical Assay Reagents
|
Others
|
PLLA2000-PEG5000-BIO is a polylactic acid derivative that can form micelles in water. In addition, PLLA2000-PEG5000-BIO can bind tightly to avidin or streptavidin for protein labeling. PLLA2000-PEG5000-BIO can be used in drug delivery research .
|
-
- HY-167380
-
|
Biochemical Assay Reagents
|
Others
|
PLLA2000-PEG2000-BIO is a polylactic acid derivative that can form micelles in water. In addition, PLLA2000-PEG2000-BIO can bind tightly to avidin or streptavidin for protein labeling. PLLA2000-PEG2000-BIO can be used in drug delivery research .
|
-
- HY-167381
-
|
Biochemical Assay Reagents
|
Others
|
PLLA2000-PEG1000-BIO is a polylactic acid derivative that can form micelles in water. In addition, PLLA2000-PEG1000-BIO can bind tightly to avidin or streptavidin for protein labeling. PLLA2000-PEG1000-BIO can be used in drug delivery research .
|
-
- HY-167382
-
|
Biochemical Assay Reagents
|
Others
|
PLLA1000-PEG5000-BIO is a polylactic acid derivative that can form micelles in water. In addition, PLLA1000-PEG5000-BIO can bind tightly to avidin or streptavidin for protein labeling. PLLA1000-PEG5000-BIO can be used in drug delivery research .
|
-
- HY-167383
-
|
Biochemical Assay Reagents
|
Others
|
PLLA1000-PEG2000-BIO is a polylactic acid derivative that can form micelles in water. In addition, PLLA1000-PEG2000-BIO can bind tightly to avidin or streptavidin for protein labeling. PLLA1000-PEG2000-BIO can be used in drug delivery research .
|
-
- HY-167384
-
|
Biochemical Assay Reagents
|
Others
|
PLLA1000-PEG1000-BIO is a polylactic acid derivative that can form micelles in water. In addition, PLLA1000-PEG1000-BIO can bind tightly to avidin or streptavidin for protein labeling. PLLA1000-PEG1000-BIO can be used in drug delivery research .
|
-
- HY-167385
-
|
Biochemical Assay Reagents
|
Others
|
PLLA10000-PEG5000-BIO is a polylactic acid derivative that can form micelles in water. In addition, PLLA10000-PEG5000-BIO can bind tightly to avidin or streptavidin for protein labeling. PLLA10000-PEG5000-BIO can be used in drug delivery research .
|
-
- HY-167386
-
|
Biochemical Assay Reagents
|
Others
|
PLLA10000-PEG2000-BIO is a polylactic acid derivative that can form micelles in water. In addition, PLLA10000-PEG2000-BIO can bind tightly to avidin or streptavidin for protein labeling. PLLA10000-PEG2000-BIO can be used in drug delivery research .
|
-
- HY-167387
-
|
Biochemical Assay Reagents
|
Others
|
PLLA10000-PEG1000-BIO is a polylactic acid derivative that can form micelles in water. In addition, PLLA10000-PEG1000-BIO can bind tightly to avidin or streptavidin for protein labeling. PLLA10000-PEG1000-BIO can be used in drug delivery research .
|
-
- HY-167342
-
|
Biochemical Assay Reagents
|
Others
|
PLLA5000-PEG4000-PLLA5000 is an amphiphilic triblock polymer based on polylactic acid derivatives that improves the specificity and cell affinity of PLA-based biomaterials. PLLA5000-PEG4000-PLLA5000 can be used in drug delivery research .
|
-
- HY-167343
-
|
Biochemical Assay Reagents
|
Others
|
PLLA5000-PEG3000-PLLA5000 is an amphiphilic triblock polymer based on polylactic acid derivatives that improves the specificity and cell affinity of PLA-based biomaterials. PLLA5000-PEG3000-PLLA5000 can be used in drug delivery research .
|
-
- HY-167344
-
|
Biochemical Assay Reagents
|
Others
|
PLLA5000-PEG2000-PLLA5000 is an amphiphilic triblock polymer based on polylactic acid derivatives that improves the specificity and cell affinity of PLA-based biomaterials. PLLA5000-PEG2000-PLLA5000 can be used in drug delivery research .
|
-
- HY-167345
-
|
Biochemical Assay Reagents
|
Others
|
PLLA5000-PEG1000-PLLA5000 is an amphiphilic triblock polymer based on polylactic acid derivatives that improves the specificity and cell affinity of PLA-based biomaterials. PLLA5000-PEG1000-PLLA5000 can be used in drug delivery research .
|
-
- HY-167346
-
|
Biochemical Assay Reagents
|
Others
|
PLLA4000-PEG8000-PLLA4000 is an amphiphilic triblock polymer based on polylactic acid derivatives that improves the specificity and cell affinity of PLA-based biomaterials. PLLA4000-PEG8000-PLLA4000 can be used in drug delivery research .
|
-
- HY-167347
-
|
Biochemical Assay Reagents
|
Others
|
PLLA4000-PEG6000-PLLA4000 is an amphiphilic triblock polymer based on polylactic acid derivatives that improves the specificity and cell affinity of PLA-based biomaterials. PLLA4000-PEG6000-PLLA4000 can be used in drug delivery research .
|
-
- HY-167348
-
|
Biochemical Assay Reagents
|
Others
|
PLLA4000-PEG4000-PLLA4000 is an amphiphilic triblock polymer based on polylactic acid derivatives that improves the specificity and cell affinity of PLA-based biomaterials. PLLA4000-PEG4000-PLLA4000 can be used in drug delivery research .
|
-
- HY-167349
-
|
Biochemical Assay Reagents
|
Others
|
PLLA4000-PEG3000-PLLA4000 is an amphiphilic triblock polymer based on polylactic acid derivatives that improves the specificity and cell affinity of PLA-based biomaterials. PLLA4000-PEG3000-PLLA4000 can be used in drug delivery research .
|
-
- HY-167350
-
|
Biochemical Assay Reagents
|
Others
|
PLLA4000-PEG2000-PLLA4000 is an amphiphilic triblock polymer based on polylactic acid derivatives that improves the specificity and cell affinity of PLA-based biomaterials. PLLA4000-PEG2000-PLLA4000 can be used in drug delivery research .
|
-
- HY-167351
-
|
Biochemical Assay Reagents
|
Others
|
PLLA4000-PEG1000-PLLA4000 is an amphiphilic triblock polymer based on polylactic acid derivatives that improves the specificity and cell affinity of PLA-based biomaterials. PLLA4000-PEG1000-PLLA4000 can be used in drug delivery research .
|
-
- HY-167352
-
|
Biochemical Assay Reagents
|
Others
|
PLLA3000-PEG8000-PLLA3000 is an amphiphilic triblock polymer based on polylactic acid derivatives that improves the specificity and cell affinity of PLA-based biomaterials. PLLA3000-PEG8000-PLLA3000 can be used in drug delivery research .
|
-
- HY-167353
-
|
Biochemical Assay Reagents
|
Others
|
PLLA3000-PEG6000-PLLA3000 is an amphiphilic triblock polymer based on polylactic acid derivatives that improves the specificity and cell affinity of PLA-based biomaterials. PLLA3000-PEG6000-PLLA3000 can be used in drug delivery research .
|
-
- HY-167354
-
|
Biochemical Assay Reagents
|
Others
|
PLLA3000-PEG4000-PLLA3000 is an amphiphilic triblock polymer based on polylactic acid derivatives that improves the specificity and cell affinity of PLA-based biomaterials. PLLA3000-PEG4000-PLLA3000 can be used in drug delivery research .
|
-
- HY-167355
-
|
Biochemical Assay Reagents
|
Others
|
PLLA3000-PEG3000-PLLA3000 is an amphiphilic triblock polymer based on polylactic acid derivatives that improves the specificity and cell affinity of PLA-based biomaterials. PLLA3000-PEG3000-PLLA3000 can be used in drug delivery research .
|
-
- HY-167356
-
|
Biochemical Assay Reagents
|
Others
|
PLLA3000-PEG2000-PLLA3000 is an amphiphilic triblock polymer based on polylactic acid derivatives that improves the specificity and cell affinity of PLA-based biomaterials. PLLA3000-PEG2000-PLLA3000 can be used in drug delivery research .
|
-
- HY-167357
-
|
Biochemical Assay Reagents
|
Others
|
PLLA3000-PEG1000-PLLA3000 is an amphiphilic triblock polymer based on polylactic acid derivatives that improves the specificity and cell affinity of PLA-based biomaterials. PLLA3000-PEG1000-PLLA3000 can be used in drug delivery research .
|
-
- HY-167358
-
|
Biochemical Assay Reagents
|
Others
|
PLLA2000-PEG8000-PLLA2000 is an amphiphilic triblock polymer based on polylactic acid derivatives that improves the specificity and cell affinity of PLA-based biomaterials. PLLA2000-PEG8000-PLLA2000 can be used in drug delivery research .
|
-
- HY-167359
-
|
Biochemical Assay Reagents
|
Others
|
PLLA2000-PEG6000-PLLA2000 is an amphiphilic triblock polymer based on polylactic acid derivatives that improves the specificity and cell affinity of PLA-based biomaterials. PLLA2000-PEG6000-PLLA2000 can be used in drug delivery research .
|
-
- HY-167360
-
|
Biochemical Assay Reagents
|
Others
|
PLLA2000-PEG4000-PLLA2000 is an amphiphilic triblock polymer based on polylactic acid derivatives that improves the specificity and cell affinity of PLA-based biomaterials. PLLA2000-PEG4000-PLLA2000 can be used in drug delivery research .
|
-
- HY-167361
-
|
Biochemical Assay Reagents
|
Others
|
PLLA2000-PEG3000-PLLA2000 is an amphiphilic triblock polymer based on polylactic acid derivatives that improves the specificity and cell affinity of PLA-based biomaterials. PLLA2000-PEG3000-PLLA2000 can be used in drug delivery research .
|
-
- HY-167362
-
|
Biochemical Assay Reagents
|
Others
|
PLLA2000-PEG2000-PLLA2000 is an amphiphilic triblock polymer based on polylactic acid derivatives that improves the specificity and cell affinity of PLA-based biomaterials. PLLA2000-PEG2000-PLLA2000 can be used in drug delivery research .
|
-
- HY-167363
-
|
Biochemical Assay Reagents
|
Others
|
PLLA2000-PEG1000-PLLA2000 is an amphiphilic triblock polymer based on polylactic acid derivatives that improves the specificity and cell affinity of PLA-based biomaterials. PLLA2000-PEG1000-PLLA2000 can be used in drug delivery research .
|
-
- HY-167364
-
|
Biochemical Assay Reagents
|
Others
|
PLLA1000-PEG8000-PLLA1000 is an amphiphilic triblock polymer based on polylactic acid derivatives that improves the specificity and cell affinity of PLA-based biomaterials. PLLA1000-PEG8000-PLLA1000 can be used in drug delivery research .
|
-
- HY-167365
-
|
Biochemical Assay Reagents
|
Others
|
PLLA1000-PEG6000-PLLA1000 is an amphiphilic triblock polymer based on polylactic acid derivatives that improves the specificity and cell affinity of PLA-based biomaterials. PLLA1000-PEG6000-PLLA1000 can be used in drug delivery research .
|
-
- HY-167366
-
|
Biochemical Assay Reagents
|
Others
|
PLLA1000-PEG4000-PLLA1000 is an amphiphilic triblock polymer based on polylactic acid derivatives that improves the specificity and cell affinity of PLA-based biomaterials. PLLA1000-PEG4000-PLLA1000 can be used in drug delivery research .
|
-
- HY-167367
-
|
Biochemical Assay Reagents
|
Others
|
PLLA1000-PEG3000-PLLA1000 is an amphiphilic triblock polymer based on polylactic acid derivatives that improves the specificity and cell affinity of PLA-based biomaterials. PLLA1000-PEG3000-PLLA1000 can be used in drug delivery research .
|
-
- HY-167368
-
|
Biochemical Assay Reagents
|
Others
|
PLLA1000-PEG2000-PLLA1000 is an amphiphilic triblock polymer based on polylactic acid derivatives that improves the specificity and cell affinity of PLA-based biomaterials. PLLA1000-PEG2000-PLLA1000 can be used in drug delivery research .
|
-
- HY-167369
-
|
Biochemical Assay Reagents
|
Others
|
PLLA1000-PEG1000-PLLA1000 is an amphiphilic triblock polymer based on polylactic acid derivatives that improves the specificity and cell affinity of PLA-based biomaterials. PLLA1000-PEG1000-PLLA1000 can be used in drug delivery research .
|
-
- HY-167119
-
|
Biochemical Assay Reagents
|
Others
|
PLLA5000-PEG8000-PLLA5000 is an amphiphilic triblock polymer based on polylactic acid derivatives that improves the specificity and cell affinity of PLA-based biomaterials. PLLA5000-PEG8000-PLLA5000 can be used in drug delivery research .
|
-
- HY-167140
-
|
Biochemical Assay Reagents
|
Others
|
PLLA6000-PEG8000-PLLA6000 is an amphiphilic triblock polymer based on polylactic acid derivatives that improves the specificity and cell affinity of PLA-based biomaterials. PLLA6000-PEG8000-PLLA6000 can be used in drug delivery research .
|
-
- HY-167137
-
|
Biochemical Assay Reagents
|
Others
|
PLLA6000-PEG6000-PLLA6000 is an amphiphilic triblock polymer based on polylactic acid derivatives that improves the specificity and cell affinity of PLA-based biomaterials. PLLA6000-PEG6000-PLLA6000 can be used in drug delivery research .
|
-
- HY-167126
-
|
Biochemical Assay Reagents
|
Others
|
PLLA6000-PEG3000-PLLA6000 is an amphiphilic triblock polymer based on polylactic acid derivatives that improves the specificity and cell affinity of PLA-based biomaterials. PLLA6000-PEG3000-PLLA6000 can be used in drug delivery research .
|
-
- HY-167128
-
|
Biochemical Assay Reagents
|
Others
|
PLLA8000-PEG8000-PLLA8000 is an amphiphilic triblock polymer based on polylactic acid derivatives that improves the specificity and cell affinity of PLA-based biomaterials. PLLA8000-PEG8000-PLLA8000 can be used in drug delivery research .
|
-
- HY-167130
-
|
Biochemical Assay Reagents
|
Others
|
PLLA8000-PEG6000-PLLA8000 is an amphiphilic triblock polymer based on polylactic acid derivatives that improves the specificity and cell affinity of PLA-based biomaterials. PLLA8000-PEG6000-PLLA8000 can be used in drug delivery research .
|
-
- HY-167136
-
|
Biochemical Assay Reagents
|
Others
|
PLLA8000-PEG3000-PLLA8000 is an amphiphilic triblock polymer based on polylactic acid derivatives that improves the specificity and cell affinity of PLA-based biomaterials. PLLA8000-PEG3000-PLLA8000 can be used in drug delivery research .
|
-
- HY-167134
-
|
Biochemical Assay Reagents
|
Others
|
PLLA8000-PEG4000-PLLA8000 is an amphiphilic triblock polymer based on polylactic acid derivatives that improves the specificity and cell affinity of PLA-based biomaterials. PLLA8000-PEG4000-PLLA8000 can be used in drug delivery research .
|
-
- HY-167132
-
|
Biochemical Assay Reagents
|
Others
|
PLLA6000-PEG4000-PLLA6000 is an amphiphilic triblock polymer based on polylactic acid derivatives that improves the specificity and cell affinity of PLA-based biomaterials. PLLA6000-PEG4000-PLLA6000 can be used in drug delivery research .
|
-
- HY-167138
-
|
Biochemical Assay Reagents
|
Others
|
PLLA8000-PEG2000-PLLA8000 is an amphiphilic triblock polymer based on polylactic acid derivatives that improves the specificity and cell affinity of PLA-based biomaterials. PLLA8000-PEG2000-PLLA8000 can be used in drug delivery research .
|
-
- HY-167139
-
|
Biochemical Assay Reagents
|
Others
|
PLLA8000-PEG1000-PLLA8000 is an amphiphilic triblock polymer based on polylactic acid derivatives that improves the specificity and cell affinity of PLA-based biomaterials. PLLA8000-PEG1000-PLLA8000 can be used in drug delivery research .
|
-
- HY-167120
-
|
Biochemical Assay Reagents
|
Others
|
PLLA6000-PEG1000-PLLA6000 is an amphiphilic triblock polymer based on polylactic acid derivatives that improves the specificity and cell affinity of PLA-based biomaterials. PLLA6000-PEG1000-PLLA6000 can be used in drug delivery research .
|
-
- HY-167118
-
|
Biochemical Assay Reagents
|
Others
|
PLLA5000-PEG6000-PLLA5000 is an amphiphilic triblock polymer based on polylactic acid derivatives that improves the specificity and cell affinity of PLA-based biomaterials. PLLA5000-PEG6000-PLLA5000 can be used in drug delivery research .
|
-
- HY-167124
-
|
Biochemical Assay Reagents
|
Others
|
PLLA6000-PEG2000-PLLA6000 is an amphiphilic triblock polymer based on polylactic acid derivatives that improves the specificity and cell affinity of PLA-based biomaterials. PLLA6000-PEG2000-PLLA6000 can be used in drug delivery research .
|
-
- HY-Y0479
-
-
- HY-W040233
-
Sodium L-lactate
|
Others
|
Others
Cancer
|
Sodium (S)-2-hydroxypropanoate (Sodium L-lactate) is a buildiing block which can be used as a precursor for the production of the bioplastic polymer poly-lactic acid .
|
-
- HY-W040233B
-
Sodium L-lactate (purity≥90%)
|
Others
|
Others
|
Sodium (S)-2-hydroxypropanoate (Sodium L-lactate) (purity≥90%) is a buildiing block which can be used as a precursor for the production of the bioplastic polymer poly-lactic acid .
|
-
- HY-Y0479R
-
|
Bacterial
Endogenous Metabolite
Antibiotic
|
Infection
|
L-Lactic acid (Standard) is the analytical standard of L-Lactic acid. This product is intended for research and analytical applications. L-Lactic acid is a buildiing block which can be used as a precursor for the production of the bioplastic polymer poly-lactic acid.
|
-
- HY-Y0479S3
-
-
- HY-W040233R
-
|
Others
|
Others
Cancer
|
Sodium (S)-2-hydroxypropanoate (Standard) is the analytical standard of Sodium (S)-2-hydroxypropanoate. This product is intended for research and analytical applications. Sodium (S)-2-hydroxypropanoate (Sodium L-lactate) is a buildiing block which can be used as a precursor for the production of the bioplastic polymer poly-lactic acid .
|
-
- HY-19873
-
|
Others
|
Cancer
|
SL-052 is a hypocrellin-based photosensitizer that has recently shown promising results in clinical and preclinical testing for cancer photodynamic therapy (PDT). SL-052 is encapsulated in biodegradable polylactic-co-glycolic acid (PLGA) polymer nanoparticles optimized using single emulsion solvent evaporation technology. The SL-052-PLGA nanoparticles were more effective in PDT treatment of subcutaneous SCCVII squamous cell carcinoma compared to polyvinylpyrrolidone (PVP)-based and standard liposomal SL-052 formulations. A longer time interval between drug injection and tumor illumination can improve tumor cure rates, and SL-052-PLGA nanoparticles showed the best therapeutic effect among all SL-052 formulations.
|
-
- HY-W010713
-
Fimaporfin free base
|
Others
|
Cancer
|
Meso-tetraphenylchlorin (TPCS2a) is a photosensitizer with poor water solubility, which limits its use in the blood circulation. However, TPCS2a@NPs nanoparticles can be prepared based on polylactic-co-polyethylene glycol acid (PLGA) polymer core loaded with TPCS2. Such nanoparticles can be coated with mesenchymal stem cell-derived plasma membranes (mMSCs) to form mMSC-TPCS2a@NPs, which prolongs blood circulation time and improves tumor targeting ability. Compared with uncoated TPCS2a@NPs, mMSC-TPCS2a@NPs can reduce macrophage uptake by 54% to 70% under different conditions. Both nanoparticle forms are effectively accumulated in MCF7 and MDA-MB-231 breast cancer cells, while uptake in normal breast epithelial cells MCF10A is significantly lower .
|
-
Cat. No. |
Product Name |
Type |
-
- HY-W250313
-
-
- HY-167071
-
|
Drug Delivery
|
PLLA-azide (MW 5000) is a polylactic acid derivative that can self-assemble in water. PLLA-azide (MW 5000) can be used in drug delivery research .
|
-
- HY-167115
-
|
Drug Delivery
|
PLLA-azide (MW 20000) is a polylactic acid derivative that can self-assemble in water. PLLA-azide (MW 20000) can be used in drug delivery research .
|
-
- HY-167117
-
|
Drug Delivery
|
PLLA-azide (MW 10000) is a polylactic acid derivative that can self-assemble in water. PLLA-azide (MW 10000) can be used in drug delivery research .
|
-
- HY-167411
-
|
Drug Delivery
|
PLLA5000-PEG5000-FOL is a polylactic acid derivative. Polylactic acid derivatives have strong binding affinity to folate receptors and clear biodegradability. PLLA5000-PEG5000-FOL can be used in drug delivery research .
|
-
- HY-167412
-
|
Drug Delivery
|
PLLA5000-PEG2000-FOL is a polylactic acid derivative. Polylactic acid derivatives have strong binding affinity to folate receptors and clear biodegradability. PLLA5000-PEG2000-FOL can be used in drug delivery research .
|
-
- HY-167413
-
|
Drug Delivery
|
PLLA20000-PEG5000-FOL is a polylactic acid derivative. Polylactic acid derivatives have strong binding affinity to folate receptors and clear biodegradability. PLLA20000-PEG5000-FOL can be used in drug delivery research .
|
-
- HY-167414
-
|
Drug Delivery
|
PLLA20000-PEG2000-FOL is a polylactic acid derivative. Polylactic acid derivatives have strong binding affinity to folate receptors and clear biodegradability. PLLA20000-PEG2000-FOL can be used in drug delivery research .
|
-
- HY-167415
-
|
Drug Delivery
|
PLLA10000-PEG5000-FOL is a polylactic acid derivative. Polylactic acid derivatives have strong binding affinity to folate receptors and clear biodegradability. PLLA10000-PEG5000-FOL can be used in drug delivery research .
|
-
- HY-167416
-
|
Drug Delivery
|
PLLA10000-PEG2000-FOL is a polylactic acid derivative. Polylactic acid derivatives have strong binding affinity to folate receptors and clear biodegradability. PLLA10000-PEG2000-FOL can be used in drug delivery research .
|
-
- HY-167388
-
|
Drug Delivery
|
PLLA5000-PEG5000-ALK is a polylactic acid derivative that can form micelles in water. PLLA5000-PEG5000-ALK can be used in drug delivery research .
|
-
- HY-167389
-
|
Drug Delivery
|
PLLA5000-PEG3000-ALK is a polylactic acid derivative that can form micelles in water. PLLA5000-PEG3000-ALK can be used in drug delivery research .
|
-
- HY-167390
-
|
Drug Delivery
|
PLLA5000-PEG2000-ALK is a polylactic acid derivative that can form micelles in water. PLLA5000-PEG2000-ALK can be used in drug delivery research .
|
-
- HY-167391
-
|
Drug Delivery
|
PLLA5000-PEG1000-ALK is a polylactic acid derivative that can form micelles in water. PLLA5000-PEG1000-ALK can be used in drug delivery research .
|
-
- HY-167392
-
|
Drug Delivery
|
PLLA4000-PEG5000-ALK is a polylactic acid derivative that can form micelles in water. PLLA4000-PEG5000-ALK can be used in drug delivery research .
|
-
- HY-167393
-
|
Drug Delivery
|
PLLA4000-PEG3000-ALK is a polylactic acid derivative that can form micelles in water. PLLA4000-PEG3000-ALK can be used in drug delivery research .
|
-
- HY-167394
-
|
Drug Delivery
|
PLLA4000-PEG2000-ALK is a polylactic acid derivative that can form micelles in water. PLLA4000-PEG2000-ALK can be used in drug delivery research .
|
-
- HY-167395
-
|
Drug Delivery
|
PLLA4000-PEG1000-ALK is a polylactic acid derivative that can form micelles in water. PLLA4000-PEG1000-ALK can be used in drug delivery research .
|
-
- HY-167396
-
|
Drug Delivery
|
PLLA3000-PEG5000-ALK is a polylactic acid derivative that can form micelles in water. PLLA3000-PEG5000-ALK can be used in drug delivery research .
|
-
- HY-167397
-
|
Drug Delivery
|
PLLA3000-PEG3000-ALK is a polylactic acid derivative that can form micelles in water. PLLA3000-PEG3000-ALK can be used in drug delivery research .
|
-
- HY-167398
-
|
Drug Delivery
|
PLLA3000-PEG2000-ALK is a polylactic acid derivative that can form micelles in water. PLLA3000-PEG2000-ALK can be used in drug delivery research .
|
-
- HY-167399
-
|
Drug Delivery
|
PLLA3000-PEG1000-ALK is a polylactic acid derivative that can form micelles in water. PLLA3000-PEG1000-ALK can be used in drug delivery research .
|
-
- HY-167400
-
|
Drug Delivery
|
PLLA2000-PEG5000-ALK is a polylactic acid derivative that can form micelles in water. PLLA2000-PEG5000-ALK can be used in drug delivery research .
|
-
- HY-167401
-
|
Drug Delivery
|
PLLA2000-PEG3000-ALK is a polylactic acid derivative that can form micelles in water. PLLA2000-PEG3000-ALK can be used in drug delivery research .
|
-
- HY-167402
-
|
Drug Delivery
|
PLLA2000-PEG2000-ALK is a polylactic acid derivative that can form micelles in water. PLLA2000-PEG2000-ALK can be used in drug delivery research .
|
-
- HY-167403
-
|
Drug Delivery
|
PLLA2000-PEG1000-ALK is a polylactic acid derivative that can form micelles in water. PLLA2000-PEG1000-ALK can be used in drug delivery research .
|
-
- HY-167404
-
|
Drug Delivery
|
PLLA1000-PEG5000-ALK is a polylactic acid derivative that can form micelles in water. PLLA1000-PEG5000-ALK can be used in drug delivery research .
|
-
- HY-167405
-
|
Drug Delivery
|
PLLA1000-PEG3000-ALK is a polylactic acid derivative that can form micelles in water. PLLA1000-PEG3000-ALK can be used in drug delivery research .
|
-
- HY-167406
-
|
Drug Delivery
|
PLLA1000-PEG2000-ALK is a polylactic acid derivative that can form micelles in water. PLLA1000-PEG2000-ALK can be used in drug delivery research .
|
-
- HY-167407
-
|
Drug Delivery
|
PLLA1000-PEG1000-ALK is a polylactic acid derivative that can form micelles in water. PLLA1000-PEG1000-ALK can be used in drug delivery research .
|
-
- HY-167408
-
|
Drug Delivery
|
PLLA10000-PEG5000-ALK is a polylactic acid derivative that can form micelles in water. PLLA10000-PEG5000-ALK can be used in drug delivery research .
|
-
- HY-167409
-
|
Drug Delivery
|
PLLA10000-PEG3000-ALK is a polylactic acid derivative that can form micelles in water. PLLA10000-PEG3000-ALK can be used in drug delivery research .
|
-
- HY-167410
-
|
Drug Delivery
|
PLLA10000-PEG2000-ALK is a polylactic acid derivative that can form micelles in water. PLLA10000-PEG2000-ALK can be used in drug delivery research .
|
-
- HY-167443
-
|
Drug Delivery
|
PLLA5000-PEG5000-N3 is a polylactic acid derivative used for encapsulating hydrophobic drugs. PLLA5000-PEG5000-N3 can be used in drug delivery research .
|
-
- HY-167444
-
|
Drug Delivery
|
PLLA5000-PEG3000-N3 is a polylactic acid derivative used for encapsulating hydrophobic drugs. PLLA5000-PEG3000-N3 can be used in drug delivery research .
|
-
- HY-167445
-
|
Drug Delivery
|
PLLA5000-PEG2000-N3 is a polylactic acid derivative used for encapsulating hydrophobic drugs. PLLA5000-PEG2000-N3 can be used in drug delivery research .
|
-
- HY-167446
-
|
Drug Delivery
|
PLLA5000-PEG1000-N3 is a polylactic acid derivative used for encapsulating hydrophobic drugs. PLLA5000-PEG1000-N3 can be used in drug delivery research .
|
-
- HY-167447
-
|
Drug Delivery
|
PLLA4000-PEG5000-N3 is a polylactic acid derivative used for encapsulating hydrophobic drugs. PLLA4000-PEG5000-N3 can be used in drug delivery research .
|
-
- HY-167448
-
|
Drug Delivery
|
PLLA4000-PEG3000-N3 is a polylactic acid derivative used for encapsulating hydrophobic drugs. PLLA4000-PEG3000-N3 can be used in drug delivery research .
|
-
- HY-167449
-
|
Drug Delivery
|
PLLA4000-PEG2000-N3 is a polylactic acid derivative used for encapsulating hydrophobic drugs. PLLA4000-PEG2000-N3 can be used in drug delivery research .
|
-
- HY-167450
-
|
Drug Delivery
|
PLLA4000-PEG1000-N3 is a polylactic acid derivative used for encapsulating hydrophobic drugs. PLLA4000-PEG1000-N3 can be used in drug delivery research .
|
-
- HY-167451
-
|
Drug Delivery
|
PLLA3000-PEG5000-N3 is a polylactic acid derivative used for encapsulating hydrophobic drugs. PLLA3000-PEG5000-N3 can be used in drug delivery research .
|
-
- HY-167452
-
|
Drug Delivery
|
PLLA3000-PEG3000-N3 is a polylactic acid derivative used for encapsulating hydrophobic drugs. PLLA3000-PEG3000-N3 can be used in drug delivery research .
|
-
- HY-167453
-
|
Drug Delivery
|
PLLA3000-PEG2000-N3 is a polylactic acid derivative used for encapsulating hydrophobic drugs. PLLA3000-PEG2000-N3 can be used in drug delivery research .
|
-
- HY-167454
-
|
Drug Delivery
|
PLLA3000-PEG1000-N3 is a polylactic acid derivative used for encapsulating hydrophobic drugs. PLLA3000-PEG1000-N3 can be used in drug delivery research .
|
-
- HY-167455
-
|
Drug Delivery
|
PLLA2000-PEG5000-N3 is a polylactic acid derivative used for encapsulating hydrophobic drugs. PLLA2000-PEG5000-N3 can be used in drug delivery research .
|
-
- HY-167456
-
|
Drug Delivery
|
PLLA2000-PEG3000-N3 is a polylactic acid derivative used for encapsulating hydrophobic drugs. PLLA2000-PEG3000-N3 can be used in drug delivery research .
|
-
- HY-167457
-
|
Drug Delivery
|
PLLA2000-PEG2000-N3 is a polylactic acid derivative used for encapsulating hydrophobic drugs. PLLA2000-PEG2000-N3 can be used in drug delivery research .
|
-
- HY-167458
-
|
Drug Delivery
|
PLLA2000-PEG1000-N3 is a polylactic acid derivative used for encapsulating hydrophobic drugs. PLLA2000-PEG1000-N3 can be used in drug delivery research .
|
-
- HY-167459
-
|
Drug Delivery
|
PLLA1000-PEG5000-N3 is a polylactic acid derivative used for encapsulating hydrophobic drugs. PLLA1000-PEG5000-N3 can be used in drug delivery research .
|
- HY-167460
-
|
Drug Delivery
|
PLLA1000-PEG3000-N3 is a polylactic acid derivative used for encapsulating hydrophobic drugs. PLLA1000-PEG3000-N3 can be used in drug delivery research .
|
- HY-167461
-
|
Drug Delivery
|
PLLA1000-PEG2000-N3 is a polylactic acid derivative used for encapsulating hydrophobic drugs. PLLA1000-PEG2000-N3 can be used in drug delivery research .
|
- HY-167462
-
|
Drug Delivery
|
PLLA1000-PEG1000-N3 is a polylactic acid derivative used for encapsulating hydrophobic drugs. PLLA1000-PEG1000-N3 can be used in drug delivery research .
|
- HY-167463
-
|
Drug Delivery
|
PLLA10000-PEG5000-N3 is a polylactic acid derivative used for encapsulating hydrophobic drugs. PLLA10000-PEG5000-N3 can be used in drug delivery research .
|
- HY-167464
-
|
Drug Delivery
|
PLLA10000-PEG3000-N3 is a polylactic acid derivative used for encapsulating hydrophobic drugs. PLLA10000-PEG3000-N3 can be used in drug delivery research .
|
- HY-167465
-
|
Drug Delivery
|
PLLA10000-PEG2000-N3 is a polylactic acid derivative used for encapsulating hydrophobic drugs. PLLA10000-PEG2000-N3 can be used in drug delivery research .
|
- HY-167466
-
|
Drug Delivery
|
PLLA10000-PEG1000-N3 is a polylactic acid derivative used for encapsulating hydrophobic drugs. PLLA10000-PEG1000-N3 can be used in drug delivery research .
|
- HY-167469
-
|
Drug Delivery
|
PLLA5000-PEG5000-RhB is a terminal rhodamine-labeled polylactic acid derivative. PLLA5000-PEG5000-RhB can be used to label nanomicelles for real-time monitoring of drug release in vivo .
|
- HY-167470
-
|
Drug Delivery
|
PLLA5000-PEG3000-RhB is a terminal rhodamine-labeled polylactic acid derivative. PLLA5000-PEG3000-RhB can be used to label nanomicelles for real-time monitoring of drug release in vivo .
|
- HY-167471
-
|
Drug Delivery
|
PLLA5000-PEG2000-RhB is a terminal rhodamine-labeled polylactic acid derivative. PLLA5000-PEG2000-RhB can be used to label nanomicelles for real-time monitoring of drug release in vivo .
|
- HY-167472
-
|
Drug Delivery
|
PLLA5000-PEG1000-RhB is a terminal rhodamine-labeled polylactic acid derivative. PLLA5000-PEG1000-RhB can be used to label nanomicelles for real-time monitoring of drug release in vivo .
|
- HY-167473
-
|
Drug Delivery
|
PLLA4000-PEG5000-RhB is a terminal rhodamine-labeled polylactic acid derivative. PLLA4000-PEG5000-RhB can be used to label nanomicelles for real-time monitoring of drug release in vivo .
|
- HY-167474
-
|
Drug Delivery
|
PLLA4000-PEG3000-RhB is a terminal rhodamine-labeled polylactic acid derivative. PLLA4000-PEG3000-RhB can be used to label nanomicelles for real-time monitoring of drug release in vivo .
|
- HY-167475
-
|
Drug Delivery
|
PLLA4000-PEG2000-RhB is a terminal rhodamine-labeled polylactic acid derivative. PLLA4000-PEG2000-RhB can be used to label nanomicelles for real-time monitoring of drug release in vivo .
|
- HY-167476
-
|
Drug Delivery
|
PLLA4000-PEG1000-RhB is a terminal rhodamine-labeled polylactic acid derivative. PLLA4000-PEG1000-RhB can be used to label nanomicelles for real-time monitoring of drug release in vivo .
|
- HY-167477
-
|
Drug Delivery
|
PLLA3000-PEG5000-RhB is a terminal rhodamine-labeled polylactic acid derivative. PLLA3000-PEG5000-RhB can be used to label nanomicelles for real-time monitoring of drug release in vivo .
|
- HY-167478
-
|
Drug Delivery
|
PLLA3000-PEG3000-RhB is a terminal rhodamine-labeled polylactic acid derivative. PLLA3000-PEG3000-RhB can be used to label nanomicelles for real-time monitoring of drug release in vivo .
|
- HY-167479
-
|
Drug Delivery
|
PLLA3000-PEG2000-RhB is a terminal rhodamine-labeled polylactic acid derivative. PLLA3000-PEG2000-RhB can be used to label nanomicelles for real-time monitoring of drug release in vivo .
|
- HY-167480
-
|
Drug Delivery
|
PLLA3000-PEG1000-RhB is a terminal rhodamine-labeled polylactic acid derivative. PLLA3000-PEG1000-RhB can be used to label nanomicelles for real-time monitoring of drug release in vivo .
|
- HY-167481
-
|
Drug Delivery
|
PLLA2000-PEG5000-RhB is a terminal rhodamine-labeled polylactic acid derivative. PLLA2000-PEG5000-RhB can be used to label nanomicelles for real-time monitoring of drug release in vivo .
|
- HY-167482
-
|
Drug Delivery
|
PLLA2000-PEG3000-RhB is a terminal rhodamine-labeled polylactic acid derivative. PLLA2000-PEG3000-RhB can be used to label nanomicelles for real-time monitoring of drug release in vivo .
|
- HY-167483
-
|
Drug Delivery
|
PLLA2000-PEG2000-RhB is a terminal rhodamine-labeled polylactic acid derivative. PLLA2000-PEG2000-RhB can be used to label nanomicelles for real-time monitoring of drug release in vivo .
|
- HY-167484
-
|
Drug Delivery
|
PLLA2000-PEG1000-RhB is a terminal rhodamine-labeled polylactic acid derivative. PLLA2000-PEG1000-RhB can be used to label nanomicelles for real-time monitoring of drug release in vivo .
|
- HY-167485
-
|
Drug Delivery
|
PLLA1000-PEG5000-RhB is a terminal rhodamine-labeled polylactic acid derivative. PLLA1000-PEG5000-RhB can be used to label nanomicelles for real-time monitoring of drug release in vivo .
|
- HY-167486
-
|
Drug Delivery
|
PLLA1000-PEG3000-RhB is a terminal rhodamine-labeled polylactic acid derivative. PLLA1000-PEG3000-RhB can be used to label nanomicelles for real-time monitoring of drug release in vivo .
|
- HY-167487
-
|
Drug Delivery
|
PLLA1000-PEG2000-RhB is a terminal rhodamine-labeled polylactic acid derivative. PLLA1000-PEG2000-RhB can be used to label nanomicelles for real-time monitoring of drug release in vivo .
|
- HY-167488
-
|
Drug Delivery
|
PLLA1000-PEG1000-RhB is a terminal rhodamine-labeled polylactic acid derivative. PLLA1000-PEG1000-RhB can be used to label nanomicelles for real-time monitoring of drug release in vivo .
|
- HY-167489
-
|
Drug Delivery
|
PLLA10000-PEG5000-RhB is a terminal rhodamine-labeled polylactic acid derivative. PLLA10000-PEG5000-RhB can be used to label nanomicelles for real-time monitoring of drug release in vivo .
|
- HY-167490
-
|
Drug Delivery
|
PLLA10000-PEG3000-RhB is a terminal rhodamine-labeled polylactic acid derivative. PLLA10000-PEG3000-RhB can be used to label nanomicelles for real-time monitoring of drug release in vivo .
|
- HY-167491
-
|
Drug Delivery
|
PLLA10000-PEG2000-RhB is a terminal rhodamine-labeled polylactic acid derivative. PLLA10000-PEG2000-RhB can be used to label nanomicelles for real-time monitoring of drug release in vivo .
|
- HY-167492
-
|
Drug Delivery
|
PLLA10000-PEG1000-RhB is a terminal rhodamine-labeled polylactic acid derivative. PLLA10000-PEG1000-RhB can be used to label nanomicelles for real-time monitoring of drug release in vivo .
|
- HY-167294
-
|
Drug Delivery
|
PLLA5000-PEG5000-Thiol is a polylactic acid derivative that forms micelles in water and initiates biodegradation by attacking ester bonds through hydrolysis. PLLA5000-PEG5000-Thiol can be used in drug delivery research .
|
- HY-167295
-
|
Drug Delivery
|
PLLA5000-PEG3000-Thiol is a polylactic acid derivative that forms micelles in water and initiates biodegradation by attacking ester bonds through hydrolysis. PLLA5000-PEG3000-Thiol can be used in drug delivery research .
|
- HY-167296
-
|
Drug Delivery
|
PLLA5000-PEG2000-Thiol is a polylactic acid derivative that forms micelles in water and initiates biodegradation by attacking ester bonds through hydrolysis. PLLA5000-PEG2000-Thiol can be used in drug delivery research .
|
- HY-167297
-
|
Drug Delivery
|
PLLA5000-PEG1000-Thiol is a polylactic acid derivative that forms micelles in water and initiates biodegradation by attacking ester bonds through hydrolysis. PLLA5000-PEG1000-Thiol can be used in drug delivery research .
|
- HY-167298
-
|
Drug Delivery
|
PLLA4000-PEG5000-Thiol is a polylactic acid derivative that forms micelles in water and initiates biodegradation by attacking ester bonds through hydrolysis. PLLA4000-PEG5000-Thiol can be used in drug delivery research .
|
- HY-167299
-
|
Drug Delivery
|
PLLA4000-PEG3000-Thiol is a polylactic acid derivative that forms micelles in water and initiates biodegradation by attacking ester bonds through hydrolysis. PLLA4000-PEG3000-Thiol can be used in drug delivery research .
|
- HY-167300
-
|
Drug Delivery
|
PLLA4000-PEG2000-Thiol is a polylactic acid derivative that forms micelles in water and initiates biodegradation by attacking ester bonds through hydrolysis. PLLA4000-PEG2000-Thiol can be used in drug delivery research .
|
- HY-167301
-
|
Drug Delivery
|
PLLA4000-PEG1000-Thiol is a polylactic acid derivative that forms micelles in water and initiates biodegradation by attacking ester bonds through hydrolysis. PLLA4000-PEG1000-Thiol can be used in drug delivery research .
|
- HY-167302
-
|
Drug Delivery
|
PLLA3000-PEG5000-Thiol is a polylactic acid derivative that forms micelles in water and initiates biodegradation by attacking ester bonds through hydrolysis. PLLA3000-PEG5000-Thiol can be used in drug delivery research .
|
- HY-167303
-
|
Drug Delivery
|
PLLA3000-PEG3000-Thiol is a polylactic acid derivative that forms micelles in water and initiates biodegradation by attacking ester bonds through hydrolysis. PLLA3000-PEG3000-Thiol can be used in drug delivery research .
|
- HY-167304
-
|
Drug Delivery
|
PLLA3000-PEG2000-Thiol is a polylactic acid derivative that forms micelles in water and initiates biodegradation by attacking ester bonds through hydrolysis. PLLA3000-PEG2000-Thiol can be used in drug delivery research .
|
- HY-167305
-
|
Drug Delivery
|
PLLA3000-PEG1000-Thiol is a polylactic acid derivative that forms micelles in water and initiates biodegradation by attacking ester bonds through hydrolysis. PLLA3000-PEG1000-Thiol can be used in drug delivery research .
|
- HY-167306
-
|
Drug Delivery
|
PLLA2000-PEG5000-Thiol is a polylactic acid derivative that forms micelles in water and initiates biodegradation by attacking ester bonds through hydrolysis. PLLA2000-PEG5000-Thiol can be used in drug delivery research .
|
- HY-167307
-
|
Drug Delivery
|
PLLA2000-PEG3000-Thiol is a polylactic acid derivative that forms micelles in water and initiates biodegradation by attacking ester bonds through hydrolysis. PLLA2000-PEG3000-Thiol can be used in drug delivery research .
|
- HY-167308
-
|
Drug Delivery
|
PLLA2000-PEG2000-Thiol is a polylactic acid derivative that forms micelles in water and initiates biodegradation by attacking ester bonds through hydrolysis. PLLA2000-PEG2000-Thiol can be used in drug delivery research .
|
- HY-167309
-
|
Drug Delivery
|
PLLA2000-PEG1000-Thiol is a polylactic acid derivative that forms micelles in water and initiates biodegradation by attacking ester bonds through hydrolysis. PLLA2000-PEG1000-Thiol can be used in drug delivery research .
|
- HY-167310
-
|
Drug Delivery
|
PLLA1000-PEG5000-Thiol is a polylactic acid derivative that forms micelles in water and initiates biodegradation by attacking ester bonds through hydrolysis. PLLA1000-PEG5000-Thiol can be used in drug delivery research .
|
- HY-167311
-
|
Drug Delivery
|
PLLA1000-PEG3000-Thiol is a polylactic acid derivative that forms micelles in water and initiates biodegradation by attacking ester bonds through hydrolysis. PLLA1000-PEG3000-Thiol can be used in drug delivery research .
|
- HY-167312
-
|
Drug Delivery
|
PLLA1000-PEG2000-Thiol is a polylactic acid derivative that forms micelles in water and initiates biodegradation by attacking ester bonds through hydrolysis. PLLA1000-PEG2000-Thiol can be used in drug delivery research .
|
- HY-167313
-
|
Drug Delivery
|
PLLA1000-PEG1000-Thiol is a polylactic acid derivative that forms micelles in water and initiates biodegradation by attacking ester bonds through hydrolysis. PLLA1000-PEG1000-Thiol can be used in drug delivery research .
|
- HY-167314
-
|
Drug Delivery
|
PLLA10000-PEG5000-Thiol is a polylactic acid derivative that forms micelles in water and initiates biodegradation by attacking ester bonds through hydrolysis. PLLA10000-PEG5000-Thiol can be used in drug delivery research .
|
- HY-167315
-
|
Drug Delivery
|
PLLA10000-PEG3000-Thiol is a polylactic acid derivative that forms micelles in water and initiates biodegradation by attacking ester bonds through hydrolysis. PLLA10000-PEG3000-Thiol can be used in drug delivery research .
|
- HY-167316
-
|
Drug Delivery
|
PLLA10000-PEG2000-Thiol is a polylactic acid derivative that forms micelles in water and initiates biodegradation by attacking ester bonds through hydrolysis. PLLA10000-PEG2000-Thiol can be used in drug delivery research .
|
- HY-167317
-
|
Drug Delivery
|
PLLA10000-PEG1000-Thiol is a polylactic acid derivative that forms micelles in water and initiates biodegradation by attacking ester bonds through hydrolysis. PLLA10000-PEG1000-Thiol can be used in drug delivery research .
|
- HY-167318
-
|
Drug Delivery
|
PLLA5000-PEG5000-SPDP is a polylactic acid derivative that can form micelles in water and the SPDP moiety can react with thiols. PLLA5000-PEG5000-SPDP can be used in drug delivery research .
|
- HY-167319
-
|
Drug Delivery
|
PLLA5000-PEG3000-SPDP is a polylactic acid derivative that can form micelles in water and the SPDP moiety can react with thiols. PLLA5000-PEG3000-SPDP can be used in drug delivery research .
|
- HY-167320
-
|
Drug Delivery
|
PLLA5000-PEG2000-SPDP is a polylactic acid derivative that can form micelles in water and the SPDP moiety can react with thiols. PLLA5000-PEG2000-SPDP can be used in drug delivery research .
|
- HY-167321
-
|
Drug Delivery
|
PLLA5000-PEG1000-SPDP is a polylactic acid derivative that can form micelles in water and the SPDP moiety can react with thiols. PLLA5000-PEG1000-SPDP can be used in drug delivery research .
|
- HY-167322
-
|
Drug Delivery
|
PLLA4000-PEG5000-SPDP is a polylactic acid derivative that can form micelles in water and the SPDP moiety can react with thiols. PLLA4000-PEG5000-SPDP can be used in drug delivery research .
|
- HY-167323
-
|
Drug Delivery
|
PLLA4000-PEG3000-SPDP is a polylactic acid derivative that can form micelles in water and the SPDP moiety can react with thiols. PLLA4000-PEG3000-SPDP can be used in drug delivery research .
|
- HY-167324
-
|
Drug Delivery
|
PLLA4000-PEG2000-SPDP is a polylactic acid derivative that can form micelles in water and the SPDP moiety can react with thiols. PLLA4000-PEG2000-SPDP can be used in drug delivery research .
|
- HY-167325
-
|
Drug Delivery
|
PLLA4000-PEG1000-SPDP is a polylactic acid derivative that can form micelles in water and the SPDP moiety can react with thiols. PLLA4000-PEG1000-SPDP can be used in drug delivery research .
|
- HY-167326
-
|
Drug Delivery
|
PLLA3000-PEG5000-SPDP is a polylactic acid derivative that can form micelles in water and the SPDP moiety can react with thiols. PLLA3000-PEG5000-SPDP can be used in drug delivery research .
|
- HY-167327
-
|
Drug Delivery
|
PLLA3000-PEG3000-SPDP is a polylactic acid derivative that can form micelles in water and the SPDP moiety can react with thiols. PLLA3000-PEG3000-SPDP can be used in drug delivery research .
|
- HY-167328
-
|
Drug Delivery
|
PLLA3000-PEG2000-SPDP is a polylactic acid derivative that can form micelles in water and the SPDP moiety can react with thiols. PLLA3000-PEG2000-SPDP can be used in drug delivery research .
|
- HY-167329
-
|
Drug Delivery
|
PLLA3000-PEG1000-SPDP is a polylactic acid derivative that can form micelles in water and the SPDP moiety can react with thiols. PLLA3000-PEG1000-SPDP can be used in drug delivery research .
|
- HY-167330
-
|
Drug Delivery
|
PLLA2000-PEG5000-SPDP is a polylactic acid derivative that can form micelles in water and the SPDP moiety can react with thiols. PLLA2000-PEG5000-SPDP can be used in drug delivery research .
|
- HY-167331
-
|
Drug Delivery
|
PLLA2000-PEG3000-SPDP is a polylactic acid derivative that can form micelles in water and the SPDP moiety can react with thiols. PLLA2000-PEG3000-SPDP can be used in drug delivery research .
|
- HY-167332
-
|
Drug Delivery
|
PLLA2000-PEG2000-SPDP is a polylactic acid derivative that can form micelles in water and the SPDP moiety can react with thiols. PLLA2000-PEG2000-SPDP can be used in drug delivery research .
|
- HY-167333
-
|
Drug Delivery
|
PLLA2000-PEG1000-SPDP is a polylactic acid derivative that can form micelles in water and the SPDP moiety can react with thiols. PLLA2000-PEG1000-SPDP can be used in drug delivery research .
|
- HY-167334
-
|
Drug Delivery
|
PLLA1000-PEG5000-SPDP is a polylactic acid derivative that can form micelles in water and the SPDP moiety can react with thiols. PLLA1000-PEG5000-SPDP can be used in drug delivery research .
|
- HY-167335
-
|
Drug Delivery
|
PLLA1000-PEG3000-SPDP is a polylactic acid derivative that can form micelles in water and the SPDP moiety can react with thiols. PLLA1000-PEG3000-SPDP can be used in drug delivery research .
|
- HY-167336
-
|
Drug Delivery
|
PLLA1000-PEG2000-SPDP is a polylactic acid derivative that can form micelles in water and the SPDP moiety can react with thiols. PLLA1000-PEG2000-SPDP can be used in drug delivery research .
|
- HY-167337
-
|
Drug Delivery
|
PLLA1000-PEG1000-SPDP is a polylactic acid derivative that can form micelles in water and the SPDP moiety can react with thiols. PLLA1000-PEG1000-SPDP can be used in drug delivery research .
|
- HY-167338
-
|
Drug Delivery
|
PLLA10000-PEG5000-SPDP is a polylactic acid derivative that can form micelles in water and the SPDP moiety can react with thiols. PLLA10000-PEG5000-SPDP can be used in drug delivery research .
|
- HY-167339
-
|
Drug Delivery
|
PLLA10000-PEG3000-SPDP is a polylactic acid derivative that can form micelles in water and the SPDP moiety can react with thiols. PLLA10000-PEG3000-SPDP can be used in drug delivery research .
|
- HY-167340
-
|
Drug Delivery
|
PLLA10000-PEG2000-SPDP is a polylactic acid derivative that can form micelles in water and the SPDP moiety can react with thiols. PLLA10000-PEG2000-SPDP can be used in drug delivery research .
|
- HY-167341
-
|
Drug Delivery
|
PLLA10000-PEG1000-SPDP is a polylactic acid derivative that can form micelles in water and the SPDP moiety can react with thiols. PLLA10000-PEG1000-SPDP can be used in drug delivery research .
|
- HY-167417
-
|
Drug Delivery
|
PLLA5000-PEG5000-NH2 is a block copolymer based on polylactic acid derivatives that can self-assemble in water. PLLA5000-PEG5000-NH2 can be used in drug delivery research .
|
- HY-167418
-
|
Drug Delivery
|
PLLA5000-PEG3000-NH2 is a block copolymer based on polylactic acid derivatives that can self-assemble in water. PLLA5000-PEG3000-NH2 can be used in drug delivery research .
|
- HY-167419
-
|
Drug Delivery
|
PLLA5000-PEG2000-NH2 is a block copolymer based on polylactic acid derivatives that can self-assemble in water. PLLA5000-PEG2000-NH2 can be used in drug delivery research .
|
- HY-167420
-
|
Drug Delivery
|
PLLA5000-PEG1000-NH2 is a block copolymer based on polylactic acid derivatives that can self-assemble in water. PLLA5000-PEG1000-NH2 can be used in drug delivery research .
|
- HY-167421
-
|
Drug Delivery
|
PLLA4000-PEG5000-NH2 is a block copolymer based on polylactic acid derivatives that can self-assemble in water. PLLA4000-PEG5000-NH2 can be used in drug delivery research .
|
- HY-167422
-
|
Drug Delivery
|
PLLA4000-PEG3000-NH2 is a block copolymer based on polylactic acid derivatives that can self-assemble in water. PLLA4000-PEG3000-NH2 can be used in drug delivery research .
|
- HY-167423
-
|
Drug Delivery
|
PLLA4000-PEG2000-NH2 is a block copolymer based on polylactic acid derivatives that can self-assemble in water. PLLA4000-PEG2000-NH2 can be used in drug delivery research .
|
- HY-167424
-
|
Drug Delivery
|
PLLA4000-PEG1000-NH2 is a block copolymer based on polylactic acid derivatives that can self-assemble in water. PLLA4000-PEG1000-NH2 can be used in drug delivery research .
|
- HY-167425
-
|
Drug Delivery
|
PLLA3000-PEG5000-NH2 is a block copolymer based on polylactic acid derivatives that can self-assemble in water. PLLA3000-PEG5000-NH2 can be used in drug delivery research .
|
- HY-167426
-
|
Drug Delivery
|
PLLA3000-PEG3000-NH2 is a block copolymer based on polylactic acid derivatives that can self-assemble in water. PLLA3000-PEG3000-NH2 can be used in drug delivery research .
|
- HY-167427
-
|
Drug Delivery
|
PLLA3000-PEG2000-NH2 is a block copolymer based on polylactic acid derivatives that can self-assemble in water. PLLA3000-PEG2000-NH2 can be used in drug delivery research .
|
- HY-167428
-
|
Drug Delivery
|
PLLA3000-PEG1000-NH2 is a block copolymer based on polylactic acid derivatives that can self-assemble in water. PLLA3000-PEG1000-NH2 can be used in drug delivery research .
|
- HY-167429
-
|
Drug Delivery
|
PLLA30000-PEG5000-NH2 is a block copolymer based on polylactic acid derivatives that can self-assemble in water. PLLA30000-PEG5000-NH2 can be used in drug delivery research .
|
- HY-167430
-
|
Drug Delivery
|
PLLA2000-PEG5000-NH2 is a block copolymer based on polylactic acid derivatives that can self-assemble in water. PLLA2000-PEG5000-NH2 can be used in drug delivery research .
|
- HY-167431
-
|
Drug Delivery
|
PLLA2000-PEG3000-NH2 is a block copolymer based on polylactic acid derivatives that can self-assemble in water. PLLA2000-PEG3000-NH2 can be used in drug delivery research .
|
- HY-167432
-
|
Drug Delivery
|
PLLA2000-PEG2000-NH2 is a block copolymer based on polylactic acid derivatives that can self-assemble in water. PLLA2000-PEG2000-NH2 can be used in drug delivery research .
|
- HY-167433
-
|
Drug Delivery
|
PLLA2000-PEG1000-NH2 is a block copolymer based on polylactic acid derivatives that can self-assemble in water. PLLA2000-PEG1000-NH2 can be used in drug delivery research .
|
- HY-167434
-
|
Drug Delivery
|
PLLA20000-PEG5000-NH2 is a block copolymer based on polylactic acid derivatives that can self-assemble in water. PLLA20000-PEG5000-NH2 can be used in drug delivery research .
|
- HY-167435
-
|
Drug Delivery
|
PLLA1000-PEG5000-NH2 is a block copolymer based on polylactic acid derivatives that can self-assemble in water. PLLA1000-PEG5000-NH2 can be used in drug delivery research .
|
- HY-167436
-
|
Drug Delivery
|
PLLA1000-PEG3000-NH2 is a block copolymer based on polylactic acid derivatives that can self-assemble in water. PLLA1000-PEG3000-NH2 can be used in drug delivery research .
|
- HY-167437
-
|
Drug Delivery
|
PLLA1000-PEG2000-NH2 is a block copolymer based on polylactic acid derivatives that can self-assemble in water. PLLA1000-PEG2000-NH2 can be used in drug delivery research .
|
- HY-167438
-
|
Drug Delivery
|
PLLA1000-PEG1000-NH2 is a block copolymer based on polylactic acid derivatives that can self-assemble in water. PLLA1000-PEG1000-NH2 can be used in drug delivery research .
|
- HY-167439
-
|
Drug Delivery
|
PLLA10000-PEG5000-NH2 is a block copolymer based on polylactic acid derivatives that can self-assemble in water. PLLA10000-PEG5000-NH2 can be used in drug delivery research .
|
- HY-167440
-
|
Drug Delivery
|
PLLA10000-PEG3000-NH2 is a block copolymer based on polylactic acid derivatives that can self-assemble in water. PLLA10000-PEG3000-NH2 can be used in drug delivery research .
|
- HY-167441
-
|
Drug Delivery
|
PLLA10000-PEG2000-NH2 is a block copolymer based on polylactic acid derivatives that can self-assemble in water. PLLA10000-PEG2000-NH2 can be used in drug delivery research .
|
- HY-167442
-
|
Drug Delivery
|
PLLA10000-PEG1000-NH2 is a block copolymer based on polylactic acid derivatives that can self-assemble in water. PLLA10000-PEG1000-NH2 can be used in drug delivery research .
|
- HY-167370
-
|
Drug Delivery
|
PLLA5000-PEG5000-BIO is a polylactic acid derivative that can form micelles in water. In addition, PLLA5000-PEG5000-BIO can bind tightly to avidin or streptavidin for protein labeling. PLLA5000-PEG5000-BIO can be used in drug delivery research .
|
- HY-167371
-
|
Drug Delivery
|
PLLA5000-PEG2000-BIO is a polylactic acid derivative that can form micelles in water. In addition, PLLA5000-PEG2000-BIO can bind tightly to avidin or streptavidin for protein labeling. PLLA5000-PEG2000-BIO can be used in drug delivery research .
|
- HY-167372
-
|
Drug Delivery
|
PLLA5000-PEG1000-BIO is a polylactic acid derivative that can form micelles in water. In addition, PLLA5000-PEG1000-BIO can bind tightly to avidin or streptavidin for protein labeling. PLLA5000-PEG1000-BIO can be used in drug delivery research .
|
- HY-167373
-
|
Drug Delivery
|
PLLA4000-PEG5000-BIO is a polylactic acid derivative that can form micelles in water. In addition, PLLA4000-PEG5000-BIO can bind tightly to avidin or streptavidin for protein labeling. PLLA4000-PEG5000-BIO can be used in drug delivery research .
|
- HY-167374
-
|
Drug Delivery
|
PLLA4000-PEG2000-BIO is a polylactic acid derivative that can form micelles in water. In addition, PLLA4000-PEG2000-BIO can bind tightly to avidin or streptavidin for protein labeling. PLLA4000-PEG2000-BIO can be used in drug delivery research .
|
- HY-167375
-
|
Drug Delivery
|
PLLA4000-PEG1000-BIO is a polylactic acid derivative that can form micelles in water. In addition, PLLA4000-PEG1000-BIO can bind tightly to avidin or streptavidin for protein labeling. PLLA4000-PEG1000-BIO can be used in drug delivery research .
|
- HY-167376
-
|
Drug Delivery
|
PLLA3000-PEG5000-BIO is a polylactic acid derivative that can form micelles in water. In addition, PLLA3000-PEG5000-BIO can bind tightly to avidin or streptavidin for protein labeling. PLLA3000-PEG5000-BIO can be used in drug delivery research .
|
- HY-167377
-
|
Drug Delivery
|
PLLA3000-PEG2000-BIO is a polylactic acid derivative that can form micelles in water. In addition, PLLA3000-PEG2000-BIO can bind tightly to avidin or streptavidin for protein labeling. PLLA3000-PEG2000-BIO can be used in drug delivery research .
|
- HY-167378
-
|
Drug Delivery
|
PLLA3000-PEG1000-BIO is a polylactic acid derivative that can form micelles in water. In addition, PLLA3000-PEG1000-BIO can bind tightly to avidin or streptavidin for protein labeling. PLLA3000-PEG1000-BIO can be used in drug delivery research .
|
- HY-167379
-
|
Drug Delivery
|
PLLA2000-PEG5000-BIO is a polylactic acid derivative that can form micelles in water. In addition, PLLA2000-PEG5000-BIO can bind tightly to avidin or streptavidin for protein labeling. PLLA2000-PEG5000-BIO can be used in drug delivery research .
|
- HY-167380
-
|
Drug Delivery
|
PLLA2000-PEG2000-BIO is a polylactic acid derivative that can form micelles in water. In addition, PLLA2000-PEG2000-BIO can bind tightly to avidin or streptavidin for protein labeling. PLLA2000-PEG2000-BIO can be used in drug delivery research .
|
- HY-167381
-
|
Drug Delivery
|
PLLA2000-PEG1000-BIO is a polylactic acid derivative that can form micelles in water. In addition, PLLA2000-PEG1000-BIO can bind tightly to avidin or streptavidin for protein labeling. PLLA2000-PEG1000-BIO can be used in drug delivery research .
|
- HY-167382
-
|
Drug Delivery
|
PLLA1000-PEG5000-BIO is a polylactic acid derivative that can form micelles in water. In addition, PLLA1000-PEG5000-BIO can bind tightly to avidin or streptavidin for protein labeling. PLLA1000-PEG5000-BIO can be used in drug delivery research .
|
- HY-167383
-
|
Drug Delivery
|
PLLA1000-PEG2000-BIO is a polylactic acid derivative that can form micelles in water. In addition, PLLA1000-PEG2000-BIO can bind tightly to avidin or streptavidin for protein labeling. PLLA1000-PEG2000-BIO can be used in drug delivery research .
|
- HY-167384
-
|
Drug Delivery
|
PLLA1000-PEG1000-BIO is a polylactic acid derivative that can form micelles in water. In addition, PLLA1000-PEG1000-BIO can bind tightly to avidin or streptavidin for protein labeling. PLLA1000-PEG1000-BIO can be used in drug delivery research .
|
- HY-167385
-
|
Drug Delivery
|
PLLA10000-PEG5000-BIO is a polylactic acid derivative that can form micelles in water. In addition, PLLA10000-PEG5000-BIO can bind tightly to avidin or streptavidin for protein labeling. PLLA10000-PEG5000-BIO can be used in drug delivery research .
|
- HY-167386
-
|
Drug Delivery
|
PLLA10000-PEG2000-BIO is a polylactic acid derivative that can form micelles in water. In addition, PLLA10000-PEG2000-BIO can bind tightly to avidin or streptavidin for protein labeling. PLLA10000-PEG2000-BIO can be used in drug delivery research .
|
- HY-167387
-
|
Drug Delivery
|
PLLA10000-PEG1000-BIO is a polylactic acid derivative that can form micelles in water. In addition, PLLA10000-PEG1000-BIO can bind tightly to avidin or streptavidin for protein labeling. PLLA10000-PEG1000-BIO can be used in drug delivery research .
|
- HY-167342
-
|
Drug Delivery
|
PLLA5000-PEG4000-PLLA5000 is an amphiphilic triblock polymer based on polylactic acid derivatives that improves the specificity and cell affinity of PLA-based biomaterials. PLLA5000-PEG4000-PLLA5000 can be used in drug delivery research .
|
- HY-167343
-
|
Drug Delivery
|
PLLA5000-PEG3000-PLLA5000 is an amphiphilic triblock polymer based on polylactic acid derivatives that improves the specificity and cell affinity of PLA-based biomaterials. PLLA5000-PEG3000-PLLA5000 can be used in drug delivery research .
|
- HY-167344
-
|
Drug Delivery
|
PLLA5000-PEG2000-PLLA5000 is an amphiphilic triblock polymer based on polylactic acid derivatives that improves the specificity and cell affinity of PLA-based biomaterials. PLLA5000-PEG2000-PLLA5000 can be used in drug delivery research .
|
- HY-167345
-
|
Drug Delivery
|
PLLA5000-PEG1000-PLLA5000 is an amphiphilic triblock polymer based on polylactic acid derivatives that improves the specificity and cell affinity of PLA-based biomaterials. PLLA5000-PEG1000-PLLA5000 can be used in drug delivery research .
|
- HY-167346
-
|
Drug Delivery
|
PLLA4000-PEG8000-PLLA4000 is an amphiphilic triblock polymer based on polylactic acid derivatives that improves the specificity and cell affinity of PLA-based biomaterials. PLLA4000-PEG8000-PLLA4000 can be used in drug delivery research .
|
- HY-167347
-
|
Drug Delivery
|
PLLA4000-PEG6000-PLLA4000 is an amphiphilic triblock polymer based on polylactic acid derivatives that improves the specificity and cell affinity of PLA-based biomaterials. PLLA4000-PEG6000-PLLA4000 can be used in drug delivery research .
|
- HY-167348
-
|
Drug Delivery
|
PLLA4000-PEG4000-PLLA4000 is an amphiphilic triblock polymer based on polylactic acid derivatives that improves the specificity and cell affinity of PLA-based biomaterials. PLLA4000-PEG4000-PLLA4000 can be used in drug delivery research .
|
- HY-167349
-
|
Drug Delivery
|
PLLA4000-PEG3000-PLLA4000 is an amphiphilic triblock polymer based on polylactic acid derivatives that improves the specificity and cell affinity of PLA-based biomaterials. PLLA4000-PEG3000-PLLA4000 can be used in drug delivery research .
|
- HY-167350
-
|
Drug Delivery
|
PLLA4000-PEG2000-PLLA4000 is an amphiphilic triblock polymer based on polylactic acid derivatives that improves the specificity and cell affinity of PLA-based biomaterials. PLLA4000-PEG2000-PLLA4000 can be used in drug delivery research .
|
- HY-167351
-
|
Drug Delivery
|
PLLA4000-PEG1000-PLLA4000 is an amphiphilic triblock polymer based on polylactic acid derivatives that improves the specificity and cell affinity of PLA-based biomaterials. PLLA4000-PEG1000-PLLA4000 can be used in drug delivery research .
|
- HY-167352
-
|
Drug Delivery
|
PLLA3000-PEG8000-PLLA3000 is an amphiphilic triblock polymer based on polylactic acid derivatives that improves the specificity and cell affinity of PLA-based biomaterials. PLLA3000-PEG8000-PLLA3000 can be used in drug delivery research .
|
- HY-167353
-
|
Drug Delivery
|
PLLA3000-PEG6000-PLLA3000 is an amphiphilic triblock polymer based on polylactic acid derivatives that improves the specificity and cell affinity of PLA-based biomaterials. PLLA3000-PEG6000-PLLA3000 can be used in drug delivery research .
|
- HY-167354
-
|
Drug Delivery
|
PLLA3000-PEG4000-PLLA3000 is an amphiphilic triblock polymer based on polylactic acid derivatives that improves the specificity and cell affinity of PLA-based biomaterials. PLLA3000-PEG4000-PLLA3000 can be used in drug delivery research .
|
- HY-167355
-
|
Drug Delivery
|
PLLA3000-PEG3000-PLLA3000 is an amphiphilic triblock polymer based on polylactic acid derivatives that improves the specificity and cell affinity of PLA-based biomaterials. PLLA3000-PEG3000-PLLA3000 can be used in drug delivery research .
|
- HY-167356
-
|
Drug Delivery
|
PLLA3000-PEG2000-PLLA3000 is an amphiphilic triblock polymer based on polylactic acid derivatives that improves the specificity and cell affinity of PLA-based biomaterials. PLLA3000-PEG2000-PLLA3000 can be used in drug delivery research .
|
- HY-167357
-
|
Drug Delivery
|
PLLA3000-PEG1000-PLLA3000 is an amphiphilic triblock polymer based on polylactic acid derivatives that improves the specificity and cell affinity of PLA-based biomaterials. PLLA3000-PEG1000-PLLA3000 can be used in drug delivery research .
|
- HY-167358
-
|
Drug Delivery
|
PLLA2000-PEG8000-PLLA2000 is an amphiphilic triblock polymer based on polylactic acid derivatives that improves the specificity and cell affinity of PLA-based biomaterials. PLLA2000-PEG8000-PLLA2000 can be used in drug delivery research .
|
- HY-167359
-
|
Drug Delivery
|
PLLA2000-PEG6000-PLLA2000 is an amphiphilic triblock polymer based on polylactic acid derivatives that improves the specificity and cell affinity of PLA-based biomaterials. PLLA2000-PEG6000-PLLA2000 can be used in drug delivery research .
|
- HY-167360
-
|
Drug Delivery
|
PLLA2000-PEG4000-PLLA2000 is an amphiphilic triblock polymer based on polylactic acid derivatives that improves the specificity and cell affinity of PLA-based biomaterials. PLLA2000-PEG4000-PLLA2000 can be used in drug delivery research .
|
- HY-167361
-
|
Drug Delivery
|
PLLA2000-PEG3000-PLLA2000 is an amphiphilic triblock polymer based on polylactic acid derivatives that improves the specificity and cell affinity of PLA-based biomaterials. PLLA2000-PEG3000-PLLA2000 can be used in drug delivery research .
|
- HY-167362
-
|
Drug Delivery
|
PLLA2000-PEG2000-PLLA2000 is an amphiphilic triblock polymer based on polylactic acid derivatives that improves the specificity and cell affinity of PLA-based biomaterials. PLLA2000-PEG2000-PLLA2000 can be used in drug delivery research .
|
- HY-167363
-
|
Drug Delivery
|
PLLA2000-PEG1000-PLLA2000 is an amphiphilic triblock polymer based on polylactic acid derivatives that improves the specificity and cell affinity of PLA-based biomaterials. PLLA2000-PEG1000-PLLA2000 can be used in drug delivery research .
|
- HY-167364
-
|
Drug Delivery
|
PLLA1000-PEG8000-PLLA1000 is an amphiphilic triblock polymer based on polylactic acid derivatives that improves the specificity and cell affinity of PLA-based biomaterials. PLLA1000-PEG8000-PLLA1000 can be used in drug delivery research .
|
- HY-167365
-
|
Drug Delivery
|
PLLA1000-PEG6000-PLLA1000 is an amphiphilic triblock polymer based on polylactic acid derivatives that improves the specificity and cell affinity of PLA-based biomaterials. PLLA1000-PEG6000-PLLA1000 can be used in drug delivery research .
|
- HY-167366
-
|
Drug Delivery
|
PLLA1000-PEG4000-PLLA1000 is an amphiphilic triblock polymer based on polylactic acid derivatives that improves the specificity and cell affinity of PLA-based biomaterials. PLLA1000-PEG4000-PLLA1000 can be used in drug delivery research .
|
- HY-167367
-
|
Drug Delivery
|
PLLA1000-PEG3000-PLLA1000 is an amphiphilic triblock polymer based on polylactic acid derivatives that improves the specificity and cell affinity of PLA-based biomaterials. PLLA1000-PEG3000-PLLA1000 can be used in drug delivery research .
|
- HY-167368
-
|
Drug Delivery
|
PLLA1000-PEG2000-PLLA1000 is an amphiphilic triblock polymer based on polylactic acid derivatives that improves the specificity and cell affinity of PLA-based biomaterials. PLLA1000-PEG2000-PLLA1000 can be used in drug delivery research .
|
- HY-167369
-
|
Drug Delivery
|
PLLA1000-PEG1000-PLLA1000 is an amphiphilic triblock polymer based on polylactic acid derivatives that improves the specificity and cell affinity of PLA-based biomaterials. PLLA1000-PEG1000-PLLA1000 can be used in drug delivery research .
|
- HY-167119
-
|
Drug Delivery
|
PLLA5000-PEG8000-PLLA5000 is an amphiphilic triblock polymer based on polylactic acid derivatives that improves the specificity and cell affinity of PLA-based biomaterials. PLLA5000-PEG8000-PLLA5000 can be used in drug delivery research .
|
- HY-167140
-
|
Drug Delivery
|
PLLA6000-PEG8000-PLLA6000 is an amphiphilic triblock polymer based on polylactic acid derivatives that improves the specificity and cell affinity of PLA-based biomaterials. PLLA6000-PEG8000-PLLA6000 can be used in drug delivery research .
|
- HY-167137
-
|
Drug Delivery
|
PLLA6000-PEG6000-PLLA6000 is an amphiphilic triblock polymer based on polylactic acid derivatives that improves the specificity and cell affinity of PLA-based biomaterials. PLLA6000-PEG6000-PLLA6000 can be used in drug delivery research .
|
- HY-167126
-
|
Drug Delivery
|
PLLA6000-PEG3000-PLLA6000 is an amphiphilic triblock polymer based on polylactic acid derivatives that improves the specificity and cell affinity of PLA-based biomaterials. PLLA6000-PEG3000-PLLA6000 can be used in drug delivery research .
|
- HY-167128
-
|
Drug Delivery
|
PLLA8000-PEG8000-PLLA8000 is an amphiphilic triblock polymer based on polylactic acid derivatives that improves the specificity and cell affinity of PLA-based biomaterials. PLLA8000-PEG8000-PLLA8000 can be used in drug delivery research .
|
- HY-167130
-
|
Drug Delivery
|
PLLA8000-PEG6000-PLLA8000 is an amphiphilic triblock polymer based on polylactic acid derivatives that improves the specificity and cell affinity of PLA-based biomaterials. PLLA8000-PEG6000-PLLA8000 can be used in drug delivery research .
|
- HY-167136
-
|
Drug Delivery
|
PLLA8000-PEG3000-PLLA8000 is an amphiphilic triblock polymer based on polylactic acid derivatives that improves the specificity and cell affinity of PLA-based biomaterials. PLLA8000-PEG3000-PLLA8000 can be used in drug delivery research .
|
- HY-167134
-
|
Drug Delivery
|
PLLA8000-PEG4000-PLLA8000 is an amphiphilic triblock polymer based on polylactic acid derivatives that improves the specificity and cell affinity of PLA-based biomaterials. PLLA8000-PEG4000-PLLA8000 can be used in drug delivery research .
|
- HY-167132
-
|
Drug Delivery
|
PLLA6000-PEG4000-PLLA6000 is an amphiphilic triblock polymer based on polylactic acid derivatives that improves the specificity and cell affinity of PLA-based biomaterials. PLLA6000-PEG4000-PLLA6000 can be used in drug delivery research .
|
- HY-167138
-
|
Drug Delivery
|
PLLA8000-PEG2000-PLLA8000 is an amphiphilic triblock polymer based on polylactic acid derivatives that improves the specificity and cell affinity of PLA-based biomaterials. PLLA8000-PEG2000-PLLA8000 can be used in drug delivery research .
|
- HY-167139
-
|
Drug Delivery
|
PLLA8000-PEG1000-PLLA8000 is an amphiphilic triblock polymer based on polylactic acid derivatives that improves the specificity and cell affinity of PLA-based biomaterials. PLLA8000-PEG1000-PLLA8000 can be used in drug delivery research .
|
- HY-167120
-
|
Drug Delivery
|
PLLA6000-PEG1000-PLLA6000 is an amphiphilic triblock polymer based on polylactic acid derivatives that improves the specificity and cell affinity of PLA-based biomaterials. PLLA6000-PEG1000-PLLA6000 can be used in drug delivery research .
|
- HY-167118
-
|
Drug Delivery
|
PLLA5000-PEG6000-PLLA5000 is an amphiphilic triblock polymer based on polylactic acid derivatives that improves the specificity and cell affinity of PLA-based biomaterials. PLLA5000-PEG6000-PLLA5000 can be used in drug delivery research .
|
- HY-167124
-
|
Drug Delivery
|
PLLA6000-PEG2000-PLLA6000 is an amphiphilic triblock polymer based on polylactic acid derivatives that improves the specificity and cell affinity of PLA-based biomaterials. PLLA6000-PEG2000-PLLA6000 can be used in drug delivery research .
|
Cat. No. |
Product Name |
Category |
Target |
Chemical Structure |
Cat. No. |
Product Name |
Chemical Structure |
-
- HY-Y0479S3
-
|
L-Lactic acid-2- 13C1 is the 13C-labeled L-Lactic acid. L-Lactic acid is a buildiing block which can be used as a precursor for the production of the bioplastic polymer poly-lactic acid.
|
-
Cat. No. |
Product Name |
|
Classification |
-
- HY-167071
-
|
|
Azide
|
PLLA-azide (MW 5000) is a polylactic acid derivative that can self-assemble in water. PLLA-azide (MW 5000) can be used in drug delivery research .
|
-
- HY-167115
-
|
|
Azide
|
PLLA-azide (MW 20000) is a polylactic acid derivative that can self-assemble in water. PLLA-azide (MW 20000) can be used in drug delivery research .
|
-
- HY-167117
-
|
|
Azide
|
PLLA-azide (MW 10000) is a polylactic acid derivative that can self-assemble in water. PLLA-azide (MW 10000) can be used in drug delivery research .
|
-
- HY-167388
-
|
|
Alkynes
|
PLLA5000-PEG5000-ALK is a polylactic acid derivative that can form micelles in water. PLLA5000-PEG5000-ALK can be used in drug delivery research .
|
-
- HY-167389
-
|
|
Alkynes
|
PLLA5000-PEG3000-ALK is a polylactic acid derivative that can form micelles in water. PLLA5000-PEG3000-ALK can be used in drug delivery research .
|
-
- HY-167390
-
|
|
Alkynes
|
PLLA5000-PEG2000-ALK is a polylactic acid derivative that can form micelles in water. PLLA5000-PEG2000-ALK can be used in drug delivery research .
|
-
- HY-167391
-
|
|
Alkynes
|
PLLA5000-PEG1000-ALK is a polylactic acid derivative that can form micelles in water. PLLA5000-PEG1000-ALK can be used in drug delivery research .
|
-
- HY-167392
-
|
|
Alkynes
|
PLLA4000-PEG5000-ALK is a polylactic acid derivative that can form micelles in water. PLLA4000-PEG5000-ALK can be used in drug delivery research .
|
-
- HY-167393
-
|
|
Alkynes
|
PLLA4000-PEG3000-ALK is a polylactic acid derivative that can form micelles in water. PLLA4000-PEG3000-ALK can be used in drug delivery research .
|
-
- HY-167394
-
|
|
Alkynes
|
PLLA4000-PEG2000-ALK is a polylactic acid derivative that can form micelles in water. PLLA4000-PEG2000-ALK can be used in drug delivery research .
|
-
- HY-167395
-
|
|
Alkynes
|
PLLA4000-PEG1000-ALK is a polylactic acid derivative that can form micelles in water. PLLA4000-PEG1000-ALK can be used in drug delivery research .
|
-
- HY-167396
-
|
|
Alkynes
|
PLLA3000-PEG5000-ALK is a polylactic acid derivative that can form micelles in water. PLLA3000-PEG5000-ALK can be used in drug delivery research .
|
-
- HY-167397
-
|
|
Alkynes
|
PLLA3000-PEG3000-ALK is a polylactic acid derivative that can form micelles in water. PLLA3000-PEG3000-ALK can be used in drug delivery research .
|
-
- HY-167398
-
|
|
Alkynes
|
PLLA3000-PEG2000-ALK is a polylactic acid derivative that can form micelles in water. PLLA3000-PEG2000-ALK can be used in drug delivery research .
|
-
- HY-167399
-
|
|
Alkynes
|
PLLA3000-PEG1000-ALK is a polylactic acid derivative that can form micelles in water. PLLA3000-PEG1000-ALK can be used in drug delivery research .
|
-
- HY-167400
-
|
|
Alkynes
|
PLLA2000-PEG5000-ALK is a polylactic acid derivative that can form micelles in water. PLLA2000-PEG5000-ALK can be used in drug delivery research .
|
-
- HY-167401
-
|
|
Alkynes
|
PLLA2000-PEG3000-ALK is a polylactic acid derivative that can form micelles in water. PLLA2000-PEG3000-ALK can be used in drug delivery research .
|
-
- HY-167402
-
|
|
Alkynes
|
PLLA2000-PEG2000-ALK is a polylactic acid derivative that can form micelles in water. PLLA2000-PEG2000-ALK can be used in drug delivery research .
|
-
- HY-167403
-
|
|
Alkynes
|
PLLA2000-PEG1000-ALK is a polylactic acid derivative that can form micelles in water. PLLA2000-PEG1000-ALK can be used in drug delivery research .
|
-
- HY-167404
-
|
|
Alkynes
|
PLLA1000-PEG5000-ALK is a polylactic acid derivative that can form micelles in water. PLLA1000-PEG5000-ALK can be used in drug delivery research .
|
-
- HY-167405
-
|
|
Alkynes
|
PLLA1000-PEG3000-ALK is a polylactic acid derivative that can form micelles in water. PLLA1000-PEG3000-ALK can be used in drug delivery research .
|
-
- HY-167406
-
|
|
Alkynes
|
PLLA1000-PEG2000-ALK is a polylactic acid derivative that can form micelles in water. PLLA1000-PEG2000-ALK can be used in drug delivery research .
|
-
- HY-167407
-
|
|
Alkynes
|
PLLA1000-PEG1000-ALK is a polylactic acid derivative that can form micelles in water. PLLA1000-PEG1000-ALK can be used in drug delivery research .
|
-
- HY-167408
-
|
|
Alkynes
|
PLLA10000-PEG5000-ALK is a polylactic acid derivative that can form micelles in water. PLLA10000-PEG5000-ALK can be used in drug delivery research .
|
-
- HY-167409
-
|
|
Alkynes
|
PLLA10000-PEG3000-ALK is a polylactic acid derivative that can form micelles in water. PLLA10000-PEG3000-ALK can be used in drug delivery research .
|
-
- HY-167410
-
|
|
Alkynes
|
PLLA10000-PEG2000-ALK is a polylactic acid derivative that can form micelles in water. PLLA10000-PEG2000-ALK can be used in drug delivery research .
|
-
- HY-167443
-
|
|
Azide
|
PLLA5000-PEG5000-N3 is a polylactic acid derivative used for encapsulating hydrophobic drugs. PLLA5000-PEG5000-N3 can be used in drug delivery research .
|
-
- HY-167444
-
|
|
Azide
|
PLLA5000-PEG3000-N3 is a polylactic acid derivative used for encapsulating hydrophobic drugs. PLLA5000-PEG3000-N3 can be used in drug delivery research .
|
-
- HY-167445
-
|
|
Azide
|
PLLA5000-PEG2000-N3 is a polylactic acid derivative used for encapsulating hydrophobic drugs. PLLA5000-PEG2000-N3 can be used in drug delivery research .
|
-
- HY-167446
-
|
|
Azide
|
PLLA5000-PEG1000-N3 is a polylactic acid derivative used for encapsulating hydrophobic drugs. PLLA5000-PEG1000-N3 can be used in drug delivery research .
|
-
- HY-167447
-
|
|
Azide
|
PLLA4000-PEG5000-N3 is a polylactic acid derivative used for encapsulating hydrophobic drugs. PLLA4000-PEG5000-N3 can be used in drug delivery research .
|
-
- HY-167448
-
|
|
Azide
|
PLLA4000-PEG3000-N3 is a polylactic acid derivative used for encapsulating hydrophobic drugs. PLLA4000-PEG3000-N3 can be used in drug delivery research .
|
-
- HY-167449
-
|
|
Azide
|
PLLA4000-PEG2000-N3 is a polylactic acid derivative used for encapsulating hydrophobic drugs. PLLA4000-PEG2000-N3 can be used in drug delivery research .
|
-
- HY-167450
-
|
|
Azide
|
PLLA4000-PEG1000-N3 is a polylactic acid derivative used for encapsulating hydrophobic drugs. PLLA4000-PEG1000-N3 can be used in drug delivery research .
|
-
- HY-167451
-
|
|
Azide
|
PLLA3000-PEG5000-N3 is a polylactic acid derivative used for encapsulating hydrophobic drugs. PLLA3000-PEG5000-N3 can be used in drug delivery research .
|
-
- HY-167452
-
|
|
Azide
|
PLLA3000-PEG3000-N3 is a polylactic acid derivative used for encapsulating hydrophobic drugs. PLLA3000-PEG3000-N3 can be used in drug delivery research .
|
-
- HY-167453
-
|
|
Azide
|
PLLA3000-PEG2000-N3 is a polylactic acid derivative used for encapsulating hydrophobic drugs. PLLA3000-PEG2000-N3 can be used in drug delivery research .
|
-
- HY-167454
-
|
|
Azide
|
PLLA3000-PEG1000-N3 is a polylactic acid derivative used for encapsulating hydrophobic drugs. PLLA3000-PEG1000-N3 can be used in drug delivery research .
|
-
- HY-167455
-
|
|
Azide
|
PLLA2000-PEG5000-N3 is a polylactic acid derivative used for encapsulating hydrophobic drugs. PLLA2000-PEG5000-N3 can be used in drug delivery research .
|
-
- HY-167456
-
|
|
Azide
|
PLLA2000-PEG3000-N3 is a polylactic acid derivative used for encapsulating hydrophobic drugs. PLLA2000-PEG3000-N3 can be used in drug delivery research .
|
-
- HY-167457
-
|
|
Azide
|
PLLA2000-PEG2000-N3 is a polylactic acid derivative used for encapsulating hydrophobic drugs. PLLA2000-PEG2000-N3 can be used in drug delivery research .
|
-
- HY-167458
-
|
|
Azide
|
PLLA2000-PEG1000-N3 is a polylactic acid derivative used for encapsulating hydrophobic drugs. PLLA2000-PEG1000-N3 can be used in drug delivery research .
|
-
- HY-167459
-
|
|
Azide
|
PLLA1000-PEG5000-N3 is a polylactic acid derivative used for encapsulating hydrophobic drugs. PLLA1000-PEG5000-N3 can be used in drug delivery research .
|
-
- HY-167460
-
|
|
Azide
|
PLLA1000-PEG3000-N3 is a polylactic acid derivative used for encapsulating hydrophobic drugs. PLLA1000-PEG3000-N3 can be used in drug delivery research .
|
-
- HY-167461
-
|
|
Azide
|
PLLA1000-PEG2000-N3 is a polylactic acid derivative used for encapsulating hydrophobic drugs. PLLA1000-PEG2000-N3 can be used in drug delivery research .
|
-
- HY-167462
-
|
|
Azide
|
PLLA1000-PEG1000-N3 is a polylactic acid derivative used for encapsulating hydrophobic drugs. PLLA1000-PEG1000-N3 can be used in drug delivery research .
|
-
- HY-167463
-
|
|
Azide
|
PLLA10000-PEG5000-N3 is a polylactic acid derivative used for encapsulating hydrophobic drugs. PLLA10000-PEG5000-N3 can be used in drug delivery research .
|
-
- HY-167464
-
|
|
Azide
|
PLLA10000-PEG3000-N3 is a polylactic acid derivative used for encapsulating hydrophobic drugs. PLLA10000-PEG3000-N3 can be used in drug delivery research .
|
-
- HY-167465
-
|
|
Azide
|
PLLA10000-PEG2000-N3 is a polylactic acid derivative used for encapsulating hydrophobic drugs. PLLA10000-PEG2000-N3 can be used in drug delivery research .
|
-
- HY-167466
-
|
|
Azide
|
PLLA10000-PEG1000-N3 is a polylactic acid derivative used for encapsulating hydrophobic drugs. PLLA10000-PEG1000-N3 can be used in drug delivery research .
|
Your information is safe with us. * Required Fields.
Inquiry Information
- Product Name:
- Cat. No.:
- Quantity:
- MCE Japan Authorized Agent: