1. Anti-infection
  2. Bacterial
  3. URB602

URB602 is a selective monoacylglycerol lipase (MGL) inhibitor, which inhibits rat brain MGL with IC50 of 28±4 μM through a noncompetitive mechanism.

For research use only. We do not sell to patients.

URB602 Chemical Structure

URB602 Chemical Structure

CAS No. : 565460-15-3

Size Price Stock Quantity
Solid + Solvent (Highly Recommended)
10 mM * 1 mL in DMSO
ready for reconstitution
USD 34 In-stock
Solution
10 mM * 1 mL in DMSO USD 34 In-stock
Solid
5 mg USD 31 In-stock
10 mg USD 50 In-stock
25 mg USD 80 In-stock
50 mg USD 140 In-stock
100 mg USD 250 In-stock
200 mg   Get quote  
500 mg   Get quote  

* Please select Quantity before adding items.

This product is a controlled substance and not for sale in your territory.

Customer Review

Based on 1 publication(s) in Google Scholar

Top Publications Citing Use of Products
  • Biological Activity

  • Protocol

  • Purity & Documentation

  • References

  • Customer Review

Description

URB602 is a selective monoacylglycerol lipase (MGL) inhibitor, which inhibits rat brain MGL with IC50 of 28±4 μM through a noncompetitive mechanism.

IC50 & Target

IC50: 28±4 μM (rat brain MGL)[1]

In Vitro

Without URB602, the apparent Michaelis constant (Km) of MGL for 2-AG is 24±1.7 μM and the maximum velocity (Vmax) is 1814±51 nmol min per mg protein; with URB602, the Km is 20±0.4 μM and the Vmax is 541±20 nmol min per mg protein (n=4). When organotypic slice cultures of rat forebrain are incubated with URB602 (100 μM), both baseline and Ca2+-ionophore-stimulated 2-arachidonoylglycerol (2-AG) concentrations are increased[1]. URB602 is an inhibitor of monoacylglycerol lipase (MGL), a serine hydrolase involved in the biological deactivation of the endocannabinoid 2-arachidonoyl-sn-glycerol (2-AG). URB602 weakly inhibits recombinant MGL (IC50=223±63 μM) through a rapid and noncompetitive mechanism[2].

MedChemExpress (MCE) has not independently confirmed the accuracy of these methods. They are for reference only.

In Vivo

URB602 at doses of 20 and 40 mg/kg tends to reduce upper GI transit and slow colonic propulsion. When taken together as whole gut transit, URB602 dose dependently inhibits transit (P<0.05) compared with the vehicle control group. The inhibitory action of 40 mg/kg URB602 on whole gut transit is absent in these mice, indicating CB1 receptor involvement in the inhibitory action[3]. URB602 decreases the AUC of pain behaviour during the early phase of the formalin test with an ED50 of 0.06±0.028 μg for JZL184 and 120±51.3 μg for URB602 in adult male Sprague-Dawley rats. Both MGL inhibitors also suppresses pain behaviour during the late phase of formalin pain, with an ED50 of 0.03±0.011 μg for JZL184 and 66±23.9 μg for URB602[4].

MedChemExpress (MCE) has not independently confirmed the accuracy of these methods. They are for reference only.

Molecular Weight

295.38

Formula

C19H21NO2

CAS No.
Appearance

Solid

Color

White to off-white

SMILES

O=C(OC1CCCCC1)NC2=CC(C3=CC=CC=C3)=CC=C2

Shipping

Room temperature in continental US; may vary elsewhere.

Storage
Powder -20°C 3 years
4°C 2 years
In solvent -80°C 2 years
-20°C 1 year
Solvent & Solubility
In Vitro: 

DMSO : 100 mg/mL (338.55 mM; Need ultrasonic; Hygroscopic DMSO has a significant impact on the solubility of product, please use newly opened DMSO)

Preparing
Stock Solutions
Concentration Solvent Mass 1 mg 5 mg 10 mg
1 mM 3.3855 mL 16.9273 mL 33.8547 mL
5 mM 0.6771 mL 3.3855 mL 6.7709 mL
View the Complete Stock Solution Preparation Table

* Please refer to the solubility information to select the appropriate solvent. Once prepared, please aliquot and store the solution to prevent product inactivation from repeated freeze-thaw cycles.
Storage method and period of stock solution: -80°C, 2 years; -20°C, 1 year. When stored at -80°C, please use it within 2 years. When stored at -20°C, please use it within 1 year.

  • Molarity Calculator

  • Dilution Calculator

Mass (g) = Concentration (mol/L) × Volume (L) × Molecular Weight (g/mol)

Mass
=
Concentration
×
Volume
×
Molecular Weight *

Concentration (start) × Volume (start) = Concentration (final) × Volume (final)

This equation is commonly abbreviated as: C1V1 = C2V2

Concentration (start)

C1

×
Volume (start)

V1

=
Concentration (final)

C2

×
Volume (final)

V2

In Vivo:

Select the appropriate dissolution method based on your experimental animal and administration route.

For the following dissolution methods, please ensure to first prepare a clear stock solution using an In Vitro approach and then sequentially add co-solvents:
To ensure reliable experimental results, the clarified stock solution can be appropriately stored based on storage conditions. As for the working solution for in vivo experiments, it is recommended to prepare freshly and use it on the same day.
The percentages shown for the solvents indicate their volumetric ratio in the final prepared solution. If precipitation or phase separation occurs during preparation, heat and/or sonication can be used to aid dissolution.

  • Protocol 1

    Add each solvent one by one:  10% DMSO    40% PEG300    5% Tween-80    45% Saline

    Solubility: 2.5 mg/mL (8.46 mM); Suspended solution; Need ultrasonic

    This protocol yields a suspended solution of 2.5 mg/mL. Suspended solution can be used for oral and intraperitoneal injection.

    Taking 1 mL working solution as an example, add 100 μL DMSO stock solution (25.0 mg/mL) to 400 μL PEG300, and mix evenly; then add 50 μL Tween-80 and mix evenly; then add 450 μL Saline to adjust the volume to 1 mL.

    Preparation of Saline: Dissolve 0.9 g sodium chloride in ddH₂O and dilute to 100 mL to obtain a clear Saline solution.
  • Protocol 2

    Add each solvent one by one:  10% DMSO    90% Corn Oil

    Solubility: ≥ 2.5 mg/mL (8.46 mM); Clear solution

    This protocol yields a clear solution of ≥ 2.5 mg/mL (saturation unknown). If the continuous dosing period exceeds half a month, please choose this protocol carefully.

    Taking 1 mL working solution as an example, add 100 μL DMSO stock solution (25.0 mg/mL) to 900 μL Corn oil, and mix evenly.

In Vivo Dissolution Calculator
Please enter the basic information of animal experiments:

Dosage

mg/kg

Animal weight
(per animal)

g

Dosing volume
(per animal)

μL

Number of animals

Recommended: Prepare an additional quantity of animals to account for potential losses during experiments.
Please enter your animal formula composition:
%
DMSO +
+
%
Tween-80 +
%
Saline
Recommended: Keep the proportion of DMSO in working solution below 2% if your animal is weak.
The co-solvents required include: DMSO, . All of co-solvents are available by MedChemExpress (MCE). , Tween 80. All of co-solvents are available by MedChemExpress (MCE).
Calculation results:
Working solution concentration: mg/mL
Method for preparing stock solution: mg drug dissolved in μL  DMSO (Stock solution concentration: mg/mL).
The concentration of the stock solution you require exceeds the measured solubility. The following solution is for reference only. If necessary, please contact MedChemExpress (MCE).
Method for preparing in vivo working solution for animal experiments: Take μL DMSO stock solution, add μL . μL , mix evenly, next add μL Tween 80, mix evenly, then add μL Saline.
 If the continuous dosing period exceeds half a month, please choose this protocol carefully.
Please ensure that the stock solution in the first step is dissolved to a clear state, and add co-solvents in sequence. You can use ultrasonic heating (ultrasonic cleaner, recommended frequency 20-40 kHz), vortexing, etc. to assist dissolution.
Purity & Documentation
References
Kinase Assay
[2]

Samples containing either URB602 (300 μM), MGL (1.4 pM), or both URB602 and MGL are incubated at 37°C for 30 min in assay buffer. At various time points, the reaction is stopped with an equal volume of ice-cold methanol and directly analyzed in positive ionization mode by LC/MS. A SB-CN column (150×2.1 mm i.d., 5 μm) eluted is used with a linear gradient of methanol in water containing 0.25% acetic acid and 5 mM ammonium acetate (from 60% to 100% of methanol in 8 min) at a flow rate of 0.5 mL/min with column temperature at 50°C. Capillary voltage is set at 4 kV and fragmentor voltage is 100V. Nebulizer pressure is set at 60 psi. N2 is used as drying gas at a flow rate of 13 liters/min and a temperature of 350°C. ESI is in the positive mode and a full scan spectrum is acquired from m/z 100 to 600. Extracted ion chromatograms are used to quantify URB602 ([M+H]+, m/z 296)[2].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Administration
[3][4]

Mice[3]
Male C57BL/6 mice (5-6 wk; 20-26 g) or female CB1-/- mice (8 wk; 18-22 g) on a C57BL/6 background are used. After an overnight fasting period (water ad libitum), a marker is administered orally to assess upper GI transit, as described in detail by others. At 30 min after intraperitoneal (ip) administration of URB602 (20 or 40 mg/kg) or vehicle (10% DMSO/Tween 80 in saline), an oral gavage of 200 μL of an Evans blue marker (5% Evans blue, 5% gum arabic) is administered. After 15 min animals are killed by cervical dislocation and the intestine from the region of the pyloric sphincter to the ileocecal junction is immediately removed. The distance traveled by the marker is measured in centimeters and expressed as a percentage of the total length of the small intestine.
Rats[4]
Three hundred and seven adult male Sprague-Dawley rats weighing 275-350 g, at the time of testing, are used. In a first study, the dose-response curves for JZL184 and URB602 are determined using the AUC of Phase 1 or Phase 2 pain behaviour. In a second study, the antinociceptive effects of JZL184 (300 μg) and URB602 (600 μg) are evaluated following injection in the paw, ipsilateral or contralateral to formalin, to exclude the possibility that systemic leakage contributed to the pattern of results obtained. In a third study, antinociceptive effects of ED50 doses of JZL184 (0.03 μg i.paw) or URB602 (66 μg i.paw), in combination with 2-AG (ED50 dose of 1 μg i.paw), are quantified to evaluate the presence of additive or synergic effects of these drugs. In a fourth study, antinociceptive effects of JZL184 (at 10 μg i.paw, an analgesic dose) are studied in the presence or absence of either AM251 or AM630 to determine whether these effects are mediated through CB1 and/or CB2 receptors. The CB1 receptor antagonist AM251 exhibits 306-fold selectivity for CB1 over CB2 receptors, whereas the CB2 receptor antagonist AM630 exhibits 70-165-fold selectivity for CB2 over CB1 receptors. The doses employed (AM251 at 80 μg i.paw and AM630 at 25 μg i.paw) are those which block peripheral antinociceptive effects of URB602 in Wistar rats. For the first study (n=4-6 per group for URB602 and n=6-8 per group for JZL184) and for all the other behavioural studies (n=6 per group), drugs, administered either alone or in combination, are dissolved in the same total volume (50 μL) and injected into the right hind paw. Preliminary experiments (n=8 per group; data not shown) confirmed that formalin-induced pain behaviour did not change following intra-paw administration of either vehicle (PEG 300: Tween 80 in a 4:1 ratio or DMSO: ethanol: cremophor: 0.9% saline in a 1:1:1:17 ratio].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

References

Complete Stock Solution Preparation Table

* Please refer to the solubility information to select the appropriate solvent. Once prepared, please aliquot and store the solution to prevent product inactivation from repeated freeze-thaw cycles.
Storage method and period of stock solution: -80°C, 2 years; -20°C, 1 year. When stored at -80°C, please use it within 2 years. When stored at -20°C, please use it within 1 year.

Optional Solvent Concentration Solvent Mass 1 mg 5 mg 10 mg 25 mg
DMSO 1 mM 3.3855 mL 16.9273 mL 33.8547 mL 84.6367 mL
5 mM 0.6771 mL 3.3855 mL 6.7709 mL 16.9273 mL
10 mM 0.3385 mL 1.6927 mL 3.3855 mL 8.4637 mL
15 mM 0.2257 mL 1.1285 mL 2.2570 mL 5.6424 mL
20 mM 0.1693 mL 0.8464 mL 1.6927 mL 4.2318 mL
25 mM 0.1354 mL 0.6771 mL 1.3542 mL 3.3855 mL
30 mM 0.1128 mL 0.5642 mL 1.1285 mL 2.8212 mL
40 mM 0.0846 mL 0.4232 mL 0.8464 mL 2.1159 mL
50 mM 0.0677 mL 0.3385 mL 0.6771 mL 1.6927 mL
60 mM 0.0564 mL 0.2821 mL 0.5642 mL 1.4106 mL
80 mM 0.0423 mL 0.2116 mL 0.4232 mL 1.0580 mL
100 mM 0.0339 mL 0.1693 mL 0.3385 mL 0.8464 mL
  • No file chosen (Maximum size is: 1024 Kb)
  • If you have published this work, please enter the PubMed ID.
  • Your name will appear on the site.
Help & FAQs
  • Do most proteins show cross-species activity?

    Species cross-reactivity must be investigated individually for each product. Many human cytokines will produce a nice response in mouse cell lines, and many mouse proteins will show activity on human cells. Other proteins may have a lower specific activity when used in the opposite species.

Your Recently Viewed Products:

Inquiry Online

Your information is safe with us. * Required Fields.

Product Name

 

Salutation

Applicant Name *

 

Email Address *

Phone Number *

 

Organization Name *

Department *

 

Requested quantity *

Country or Region *

     

Remarks

Bulk Inquiry

Inquiry Information

Product Name:
URB602
Cat. No.:
HY-100792
Quantity:
MCE Japan Authorized Agent: