1. Membrane Transporter/Ion Channel Neuronal Signaling
  2. Calcium Channel
  3. CALP3

CALP3, a Ca2+-like peptide, is a potent Ca2+ channel blocker that activates EF hand motifs of Ca2+-binding proteins. CALP3 can functionally mimic increased [Ca2+]i by modulating the activity of Calmodulin (CaM), Ca2+ channels and pumps. CALP3 has the potential in controlling apoptosis in diseases such as AIDS or neuronal loss due to ischemia.

For research use only. We do not sell to patients.

Custom Peptide Synthesis

CALP3 Chemical Structure

CALP3 Chemical Structure

CAS No. : 261969-05-5

Size Price Stock Quantity
1 mg USD 105 In-stock
5 mg USD 260 In-stock
10 mg USD 390 In-stock
25 mg USD 720 In-stock
50 mg USD 1100 In-stock
100 mg   Get quote  
200 mg   Get quote  

* Please select Quantity before adding items.

This product is a controlled substance and not for sale in your territory.

Customer Review

Based on 2 publication(s) in Google Scholar

Other Forms of CALP3:

Top Publications Citing Use of Products
  • Biological Activity

  • Purity & Documentation

  • References

  • Customer Review

Description

CALP3, a Ca2+-like peptide, is a potent Ca2+ channel blocker that activates EF hand motifs of Ca2+-binding proteins. CALP3 can functionally mimic increased [Ca2+]i by modulating the activity of Calmodulin (CaM), Ca2+ channels and pumps. CALP3 has the potential in controlling apoptosis in diseases such as AIDS or neuronal loss due to ischemia[1][2].

In Vitro

CALP3 (50, 100, 150, 200 μM) inhibits glutamate caused a large sustained increase in [Ca2+]i in a dose-dependent manner (IC50=37.25 μM) in Fura-2-loaded neuronal cultures[1].
CALP3 (50, 100, 150, 200 μM) inhibits glutamate-induced cytotoxicity in a dose-dependent manner (IC50=50.97 μM) in cultured rat neocortical neurons. CALP3 causes dose-dependent inhibition of apoptosis (IC50=33.41 μM)[1].
CALP3 (100 μM) inhibits apoptosis induced by HIV gp120 and SAg in Human T cells[1].
CALP3 (100?μM; 15?min pretreatment) reduces gossypol-induced necrosis and increases the fraction of live cells[2].
Cyclic-CALP3 is synthesized starting from Fmoc-Asp(PEG-PS)-OAl. Cyclic CALP3 is unable to inhibit Ca21 influx, and this peptide served as a negative control. Cyclic CALP3 does not inhibit the effect of glutamate[1].

MedChemExpress (MCE) has not independently confirmed the accuracy of these methods. They are for reference only.

Molecular Weight

881.07

Formula

C44H68N10O9

CAS No.
Appearance

Solid

Color

White to off-white

Sequence Shortening

VKFGVGFK

Shipping

Room temperature in continental US; may vary elsewhere.

Storage

Sealed storage, away from moisture

Powder -80°C 2 years
-20°C 1 year

*In solvent : -80°C, 6 months; -20°C, 1 month (sealed storage, away from moisture)

Solvent & Solubility
In Vitro: 

DMSO : 12.5 mg/mL (14.19 mM; Need ultrasonic; Hygroscopic DMSO has a significant impact on the solubility of product, please use newly opened DMSO)

Preparing
Stock Solutions
Concentration Solvent Mass 1 mg 5 mg 10 mg
1 mM 1.1350 mL 5.6749 mL 11.3498 mL
5 mM 0.2270 mL 1.1350 mL 2.2700 mL
View the Complete Stock Solution Preparation Table

* Please refer to the solubility information to select the appropriate solvent. Once prepared, please aliquot and store the solution to prevent product inactivation from repeated freeze-thaw cycles.
Storage method and period of stock solution: -80°C, 6 months; -20°C, 1 month (sealed storage, away from moisture). When stored at -80°C, please use it within 6 months. When stored at -20°C, please use it within 1 month.

  • Molarity Calculator

  • Dilution Calculator

Mass (g) = Concentration (mol/L) × Volume (L) × Molecular Weight (g/mol)

Mass
=
Concentration
×
Volume
×
Molecular Weight *

Concentration (start) × Volume (start) = Concentration (final) × Volume (final)

This equation is commonly abbreviated as: C1V1 = C2V2

Concentration (start)

C1

×
Volume (start)

V1

=
Concentration (final)

C2

×
Volume (final)

V2

In Vivo:

Select the appropriate dissolution method based on your experimental animal and administration route.

For the following dissolution methods, please ensure to first prepare a clear stock solution using an In Vitro approach and then sequentially add co-solvents:
To ensure reliable experimental results, the clarified stock solution can be appropriately stored based on storage conditions. As for the working solution for in vivo experiments, it is recommended to prepare freshly and use it on the same day.
The percentages shown for the solvents indicate their volumetric ratio in the final prepared solution. If precipitation or phase separation occurs during preparation, heat and/or sonication can be used to aid dissolution.

  • Protocol 1

    Add each solvent one by one:  10% DMSO    40% PEG300    5% Tween-80    45% Saline

    Solubility: ≥ 1.25 mg/mL (1.42 mM); Clear solution

    This protocol yields a clear solution of ≥ 1.25 mg/mL (saturation unknown).

    Taking 1 mL working solution as an example, add 100 μL DMSO stock solution (12.5 mg/mL) to 400 μL PEG300, and mix evenly; then add 50 μL Tween-80 and mix evenly; then add 450 μL Saline to adjust the volume to 1 mL.

    Preparation of Saline: Dissolve 0.9 g sodium chloride in ddH₂O and dilute to 100 mL to obtain a clear Saline solution.
  • Protocol 2

    Add each solvent one by one:  10% DMSO    90% (20% SBE-β-CD in Saline)

    Solubility: ≥ 1.25 mg/mL (1.42 mM); Clear solution

    This protocol yields a clear solution of ≥ 1.25 mg/mL (saturation unknown).

    Taking 1 mL working solution as an example, add 100 μL DMSO stock solution (12.5 mg/mL) to 900 μL 20% SBE-β-CD in Saline, and mix evenly.

    Preparation of 20% SBE-β-CD in Saline (4°C, storage for one week): 2 g SBE-β-CD powder is dissolved in 10 mL Saline, completely dissolve until clear.
In Vivo Dissolution Calculator
Please enter the basic information of animal experiments:

Dosage

mg/kg

Animal weight
(per animal)

g

Dosing volume
(per animal)

μL

Number of animals

Recommended: Prepare an additional quantity of animals to account for potential losses during experiments.
Please enter your animal formula composition:
%
DMSO +
+
%
Tween-80 +
%
Saline
Recommended: Keep the proportion of DMSO in working solution below 2% if your animal is weak.
The co-solvents required include: DMSO, . All of co-solvents are available by MedChemExpress (MCE). , Tween 80. All of co-solvents are available by MedChemExpress (MCE).
Calculation results:
Working solution concentration: mg/mL
Method for preparing stock solution: mg drug dissolved in μL  DMSO (Stock solution concentration: mg/mL).

*In solvent : -80°C, 6 months; -20°C, 1 month (sealed storage, away from moisture)

The concentration of the stock solution you require exceeds the measured solubility. The following solution is for reference only. If necessary, please contact MedChemExpress (MCE).
Method for preparing in vivo working solution for animal experiments: Take μL DMSO stock solution, add μL . μL , mix evenly, next add μL Tween 80, mix evenly, then add μL Saline.
 If the continuous dosing period exceeds half a month, please choose this protocol carefully.
Please ensure that the stock solution in the first step is dissolved to a clear state, and add co-solvents in sequence. You can use ultrasonic heating (ultrasonic cleaner, recommended frequency 20-40 kHz), vortexing, etc. to assist dissolution.
Purity & Documentation
References

Complete Stock Solution Preparation Table

* Please refer to the solubility information to select the appropriate solvent. Once prepared, please aliquot and store the solution to prevent product inactivation from repeated freeze-thaw cycles.
Storage method and period of stock solution: -80°C, 6 months; -20°C, 1 month (sealed storage, away from moisture). When stored at -80°C, please use it within 6 months. When stored at -20°C, please use it within 1 month.

Optional Solvent Concentration Solvent Mass 1 mg 5 mg 10 mg 25 mg
DMSO 1 mM 1.1350 mL 5.6749 mL 11.3498 mL 28.3746 mL
5 mM 0.2270 mL 1.1350 mL 2.2700 mL 5.6749 mL
10 mM 0.1135 mL 0.5675 mL 1.1350 mL 2.8375 mL
  • No file chosen (Maximum size is: 1024 Kb)
  • If you have published this work, please enter the PubMed ID.
  • Your name will appear on the site.
Help & FAQs
  • Do most proteins show cross-species activity?

    Species cross-reactivity must be investigated individually for each product. Many human cytokines will produce a nice response in mouse cell lines, and many mouse proteins will show activity on human cells. Other proteins may have a lower specific activity when used in the opposite species.

Your Recently Viewed Products:

Inquiry Online

Your information is safe with us. * Required Fields.

Product Name

 

Salutation

Applicant Name *

 

Email Address *

Phone Number *

 

Organization Name *

Department *

 

Requested quantity *

Country or Region *

     

Remarks

Bulk Inquiry

Inquiry Information

Product Name:
CALP3
Cat. No.:
HY-P1075
Quantity:
MCE Japan Authorized Agent: