1. Cell Cycle/DNA Damage Apoptosis
  2. CDK Apoptosis
  3. PHA-793887

PHA-793887 is a potent, ATP-competitive CDK inhibitor, can inhibit Cdk2, Cdk1, Cdk4, and Cdk9 with IC50s of 8 nM, 60 nM, 62 nM and 138 nM, respectively, and also inhibits glycogen synthase kinase 3β with an IC50 of 79 nM.

For research use only. We do not sell to patients.

PHA-793887 Chemical Structure

PHA-793887 Chemical Structure

CAS No. : 718630-59-2

Size Price Stock Quantity
Free Sample (0.1 - 0.5 mg)   Apply Now  
Solid + Solvent (Highly Recommended)
10 mM * 1 mL in DMSO
ready for reconstitution
USD 61 In-stock
Solution
10 mM * 1 mL in DMSO USD 61 In-stock
Solid
5 mg USD 55 In-stock
10 mg USD 90 In-stock
25 mg USD 150 In-stock
50 mg USD 250 In-stock
100 mg USD 400 In-stock
200 mg   Get quote  
500 mg   Get quote  

* Please select Quantity before adding items.

This product is a controlled substance and not for sale in your territory.

Customer Review

Based on 4 publication(s) in Google Scholar

Top Publications Citing Use of Products
  • Biological Activity

  • Protocol

  • Purity & Documentation

  • References

  • Customer Review

Description

PHA-793887 is a potent, ATP-competitive CDK inhibitor, can inhibit Cdk2, Cdk1, Cdk4, and Cdk9 with IC50s of 8 nM, 60 nM, 62 nM and 138 nM, respectively, and also inhibits glycogen synthase kinase 3β with an IC50 of 79 nM.

IC50 & Target[4]

Cdk5/p25

5 nM (IC50)

cdk2/cyclin A

8 nM (IC50)

CDK2/cyclinE

8 nM (IC50)

CDK7/cyclin H

10 nM (IC50)

Cdk1/cyclin B

60 nM (IC50)

Cdk4/cyclin D1

62 nM (IC50)

CDK9/cyclinT1

138 nM (IC50)

GSK-3β

79 nM (IC50)

In Vitro

PHA-793887 partially inhibits Rb phosphorylation at 1 μM and almost completely at 3 μM, in A2780 tumor cell line. PHA-793887 (1 μM) partially inhibits phosphorylation of the Cdk2 substrates Rb and NPM in A2780 tumor cell line. PHA-793887 (6 μM) significantly inhibits Rb and NPM phosphorylation in MCF7 cell line[1]. PHA-793887 shows cytotoxic activities against leukemic cell lines in vitro, with IC50 ranging from 0.3 to 7 μM. In colony assays, PHA-793887 is highly cytotoxic for leukemia cell lines, with an IC50 <0.1 μM. PHA-793887 induces cell-cycle arrest, inhibits Rb and nucleophosmin phosphorylation, and modulates cyclin E and cdc6 expression at low doses of 0.2 to 1 μM and induces apoptosis at the highest dose of 5 μM. PHA-793887 is a novel inhibitor of several cdk, including cdk1, cdk2, cdk4, cdk5, cdk7, and cdk9 with IC50 in the 5 to 140 nM range[3].

MedChemExpress (MCE) has not independently confirmed the accuracy of these methods. They are for reference only.

In Vivo

PHA-793887 induces tumor growth inhibition in the range of 50% at dose of 15 mg/kg to 75% at dose of 30 mg/kg in CD-1 nude mice. PHA-793887 (30 mg/kg, i.v.) also induces significant downregulation of the 58-gene panel in the skin of CD-1 mice[1]. PHA-793887 (20 mg/kg, i.v.) induces tumor regression in the HL60 model. In the K562 model, PHA-793887 significantly reduces tumor growth. Moreover, PHA-793887 (20 mg/kg, i.v.) inhibits human primary leukemia growth in engraftment setting in vivo[3].

MedChemExpress (MCE) has not independently confirmed the accuracy of these methods. They are for reference only.

Clinical Trial
Molecular Weight

361.48

Formula

C19H31N5O2

CAS No.
Appearance

Solid

Color

White to yellow

SMILES

CC(C)CC(NC1=NNC2=C1CN(C(C3CCN(C)CC3)=O)C2(C)C)=O

Shipping

Room temperature in continental US; may vary elsewhere.

Storage
Powder -20°C 3 years
4°C 2 years
In solvent -80°C 2 years
-20°C 1 year
Solvent & Solubility
In Vitro: 

DMSO : ≥ 50 mg/mL (138.32 mM; Hygroscopic DMSO has a significant impact on the solubility of product, please use newly opened DMSO)

*"≥" means soluble, but saturation unknown.

Preparing
Stock Solutions
Concentration Solvent Mass 1 mg 5 mg 10 mg
1 mM 2.7664 mL 13.8320 mL 27.6640 mL
5 mM 0.5533 mL 2.7664 mL 5.5328 mL
View the Complete Stock Solution Preparation Table

* Please refer to the solubility information to select the appropriate solvent. Once prepared, please aliquot and store the solution to prevent product inactivation from repeated freeze-thaw cycles.
Storage method and period of stock solution: -80°C, 2 years; -20°C, 1 year. When stored at -80°C, please use it within 2 years. When stored at -20°C, please use it within 1 year.

  • Molarity Calculator

  • Dilution Calculator

Mass (g) = Concentration (mol/L) × Volume (L) × Molecular Weight (g/mol)

Mass
=
Concentration
×
Volume
×
Molecular Weight *

Concentration (start) × Volume (start) = Concentration (final) × Volume (final)

This equation is commonly abbreviated as: C1V1 = C2V2

Concentration (start)

C1

×
Volume (start)

V1

=
Concentration (final)

C2

×
Volume (final)

V2

In Vivo:

Select the appropriate dissolution method based on your experimental animal and administration route.

For the following dissolution methods, please ensure to first prepare a clear stock solution using an In Vitro approach and then sequentially add co-solvents:
To ensure reliable experimental results, the clarified stock solution can be appropriately stored based on storage conditions. As for the working solution for in vivo experiments, it is recommended to prepare freshly and use it on the same day.
The percentages shown for the solvents indicate their volumetric ratio in the final prepared solution. If precipitation or phase separation occurs during preparation, heat and/or sonication can be used to aid dissolution.

  • Protocol 1

    Add each solvent one by one:  10% DMSO    90% (20% SBE-β-CD in Saline)

    Solubility: ≥ 2.5 mg/mL (6.92 mM); Clear solution

    This protocol yields a clear solution of ≥ 2.5 mg/mL (saturation unknown).

    Taking 1 mL working solution as an example, add 100 μL DMSO stock solution (25.0 mg/mL) to 900 μL 20% SBE-β-CD in Saline, and mix evenly.

    Preparation of 20% SBE-β-CD in Saline (4°C, storage for one week): 2 g SBE-β-CD powder is dissolved in 10 mL Saline, completely dissolve until clear.
In Vivo Dissolution Calculator
Please enter the basic information of animal experiments:

Dosage

mg/kg

Animal weight
(per animal)

g

Dosing volume
(per animal)

μL

Number of animals

Recommended: Prepare an additional quantity of animals to account for potential losses during experiments.
Please enter your animal formula composition:
%
DMSO +
+
%
Tween-80 +
%
Saline
Recommended: Keep the proportion of DMSO in working solution below 2% if your animal is weak.
The co-solvents required include: DMSO, . All of co-solvents are available by MedChemExpress (MCE). , Tween 80. All of co-solvents are available by MedChemExpress (MCE).
Calculation results:
Working solution concentration: mg/mL
Method for preparing stock solution: mg drug dissolved in μL  DMSO (Stock solution concentration: mg/mL).
The concentration of the stock solution you require exceeds the measured solubility. The following solution is for reference only. If necessary, please contact MedChemExpress (MCE).
Method for preparing in vivo working solution for animal experiments: Take μL DMSO stock solution, add μL . μL , mix evenly, next add μL Tween 80, mix evenly, then add μL Saline.
 If the continuous dosing period exceeds half a month, please choose this protocol carefully.
Please ensure that the stock solution in the first step is dissolved to a clear state, and add co-solvents in sequence. You can use ultrasonic heating (ultrasonic cleaner, recommended frequency 20-40 kHz), vortexing, etc. to assist dissolution.
Purity & Documentation

Purity: 99.25%

References
Cell Assay
[3]

Cytotoxicity assays are performed using the Alamar blue vital dye. For each cell line, preliminary dose−response curves are performed to establish the cell-concentration range, giving a linear relationship with fluorescence. For cell lines, 5,000 to 20,000 cells are plated in 200 μL complete medium in 96-well plates, in the presence or absence of increasing doses of drugs (0.01−10 μM). For ALL-2 and AML-PS leukemias 10 × 105 cells/well are plated in StemSpanSFEM medium and treated with the same range of drug concentrations. Peripheral blood mononuclear cells and cord blood CD34+ cells are plated 1 × 105 cells/well in presence or absence of 1 μg/mL phytohemagglutin or growth factor cocktail (50 ng/mL stem cell factor, 20 ng/mL each of granulocyte-macrophage colony-stimulating factor, granulocyte colony-stimulating factor, interleukin-3, interleukin-6, and 3 U/mL erythropoietin), respectively. In all cases, after 48 hours culture, 1/10 volume Alamar blue solution is added and incubated overnight. The plates are then read in a fluorimeter with excitation at 535 nm and emission at 590 nm. Cytotoxicity is calculated as percentage of fluorescence with respect to untreated control, after subtracting for background fluorescence in absence of cells.

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Administration
[3]

107 HL60 and K562 cells are inoculated subcutaneously in SCID mice. Animals are randomized in seven mice per group. PHA-793887 is administered at 20 mg/kg intravenous (IV) once a day, continuously for 10 days (from day 9 to day 18) in HL60 model and with a two 5-day cycles (from day 9 to day 13 and from day 17 to day 21) in K562-bearing mice. Glivec is orally administered for 9 consecutive days from day 9 onward in the K562 xenograft model. Tumor growth and net body weight are evaluated twice a week. The tumor weight is calculated according to the following formula: tumor weight = length (mm) × width2 (mm) /2. The effect of the anticancer treatment is determined as the delay in onset of an exponential growth of tumors. This delay (T − C value) is defined as the difference of median time (in days) required for the tumors of treatment (T) and control groups (C) to reach a predetermined size. Toxicity is evaluated on the basis of the body weight reduction.

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

References

Complete Stock Solution Preparation Table

* Please refer to the solubility information to select the appropriate solvent. Once prepared, please aliquot and store the solution to prevent product inactivation from repeated freeze-thaw cycles.
Storage method and period of stock solution: -80°C, 2 years; -20°C, 1 year. When stored at -80°C, please use it within 2 years. When stored at -20°C, please use it within 1 year.

Optional Solvent Concentration Solvent Mass 1 mg 5 mg 10 mg 25 mg
DMSO 1 mM 2.7664 mL 13.8320 mL 27.6640 mL 69.1601 mL
5 mM 0.5533 mL 2.7664 mL 5.5328 mL 13.8320 mL
10 mM 0.2766 mL 1.3832 mL 2.7664 mL 6.9160 mL
15 mM 0.1844 mL 0.9221 mL 1.8443 mL 4.6107 mL
20 mM 0.1383 mL 0.6916 mL 1.3832 mL 3.4580 mL
25 mM 0.1107 mL 0.5533 mL 1.1066 mL 2.7664 mL
30 mM 0.0922 mL 0.4611 mL 0.9221 mL 2.3053 mL
40 mM 0.0692 mL 0.3458 mL 0.6916 mL 1.7290 mL
50 mM 0.0553 mL 0.2766 mL 0.5533 mL 1.3832 mL
60 mM 0.0461 mL 0.2305 mL 0.4611 mL 1.1527 mL
80 mM 0.0346 mL 0.1729 mL 0.3458 mL 0.8645 mL
100 mM 0.0277 mL 0.1383 mL 0.2766 mL 0.6916 mL
  • No file chosen (Maximum size is: 1024 Kb)
  • If you have published this work, please enter the PubMed ID.
  • Your name will appear on the site.
Help & FAQs
  • Do most proteins show cross-species activity?

    Species cross-reactivity must be investigated individually for each product. Many human cytokines will produce a nice response in mouse cell lines, and many mouse proteins will show activity on human cells. Other proteins may have a lower specific activity when used in the opposite species.

Your Recently Viewed Products:

Inquiry Online

Your information is safe with us. * Required Fields.

Product Name

 

Salutation

Applicant Name *

 

Email Address *

Phone Number *

 

Organization Name *

Department *

 

Requested quantity *

Country or Region *

     

Remarks

Bulk Inquiry

Inquiry Information

Product Name:
PHA-793887
Cat. No.:
HY-11001
Quantity:
MCE Japan Authorized Agent: