1. Cell Cycle/DNA Damage Metabolic Enzyme/Protease
  2. HSP
  3. Bimoclomol

Bimoclomol is a heat shock protein (HSP) coinducer, used for treatment of cardiovascular diseases.

For research use only. We do not sell to patients.

Bimoclomol Chemical Structure

Bimoclomol Chemical Structure

CAS No. : 130493-03-7

Size Price Stock Quantity
Oil + Solvent (Highly Recommended)
10 mM * 1 mL in DMSO
ready for reconstitution
In-stock
Solution
10 mM * 1 mL in DMSO In-stock
Oil
5 mg In-stock
10 mg In-stock
25 mg In-stock
50 mg In-stock
100 mg In-stock
200 mg   Get quote  
500 mg   Get quote  

* Please select Quantity before adding items.

This product is a controlled substance and not for sale in your territory.

Top Publications Citing Use of Products

View All HSP Isoform Specific Products:

  • Biological Activity

  • Protocol

  • Purity & Documentation

  • References

  • Customer Review

Description

Bimoclomol is a heat shock protein (HSP) coinducer, used for treatment of cardiovascular diseases.

IC50 & Target[1]

HSP

 

In Vitro

Bimoclomol (40 μM) significantly increases coronary flow (CF) in the period of normoxic perfusion (before ischemia). Bimoclomol significantly increases LVDP and CO, but it decreases LVEDP under ischemic conditions. Bimoclomol displays a biphasic effect on the rate of relaxation. Bimoclomol (>10 μM) causes concentration-dependent vasorelaxation, with EC50 value of 214 μM. Bimoclomol (100 μM) induces vasorelaxation also against 20 mM KCl. However, bimoclomol fails to relax preparations precontracted with serotonin, PGF2 or angiotensin II[1]. Bimoclomol does not affect the stability of Hsp70 or its mRNA. Bimoclomol coinduces Hsp expression via the prolonged activation of the heat shock transcription factor (HSF-1). The effects of bimoclomol are abolished in cells from mice lacking HSF-1. Furthermore, bimoclomol can bind to HSF-1 and induce a prolonged binding of HSF-1 to the respective DNA elements[2]. Bimoclomol (0.1, 1 and 10 μM) improves cell survival of rat neonatal cardiomyocytes compared to vehicle-treated cells. Bimoclomol (0.01 to 10 μM) significantly elevates HSP70 levels, based on the time of exposure. Pretreatment with bimoclomol for 24 h significantly increases survival of cells[3].

MedChemExpress (MCE) has not independently confirmed the accuracy of these methods. They are for reference only.

In Vivo

Bimoclomol (1 and 5 mg/kg) decreases the ST-segment elevation induced by coronary occlusion by 56% and 80%, respectively, in anesthetized dogs[1].

MedChemExpress (MCE) has not independently confirmed the accuracy of these methods. They are for reference only.

Molecular Weight

297.78

Formula

C14H20ClN3O2

CAS No.
Appearance

Oil

Color

Light yellow to brown

SMILES

Cl/C(C1=CC=CN=C1)=N\OCC(O)CN2CCCCC2

Shipping

Room temperature in continental US; may vary elsewhere.

Storage

4°C, sealed storage, away from moisture and light

*In solvent : -80°C, 6 months; -20°C, 1 month (sealed storage, away from moisture and light)

Solvent & Solubility
In Vitro: 

DMSO : 100 mg/mL (335.82 mM; Need ultrasonic; Hygroscopic DMSO has a significant impact on the solubility of product, please use newly opened DMSO)

Preparing
Stock Solutions
Concentration Solvent Mass 1 mg 5 mg 10 mg
1 mM 3.3582 mL 16.7909 mL 33.5818 mL
5 mM 0.6716 mL 3.3582 mL 6.7164 mL
View the Complete Stock Solution Preparation Table

* Please refer to the solubility information to select the appropriate solvent. Once prepared, please aliquot and store the solution to prevent product inactivation from repeated freeze-thaw cycles.
Storage method and period of stock solution: -80°C, 6 months; -20°C, 1 month (sealed storage, away from moisture and light). When stored at -80°C, please use it within 6 months. When stored at -20°C, please use it within 1 month.

  • Molarity Calculator

  • Dilution Calculator

Mass (g) = Concentration (mol/L) × Volume (L) × Molecular Weight (g/mol)

Mass
=
Concentration
×
Volume
×
Molecular Weight *

Concentration (start) × Volume (start) = Concentration (final) × Volume (final)

This equation is commonly abbreviated as: C1V1 = C2V2

Concentration (start)

C1

×
Volume (start)

V1

=
Concentration (final)

C2

×
Volume (final)

V2

In Vivo:

Select the appropriate dissolution method based on your experimental animal and administration route.

For the following dissolution methods, please ensure to first prepare a clear stock solution using an In Vitro approach and then sequentially add co-solvents:
To ensure reliable experimental results, the clarified stock solution can be appropriately stored based on storage conditions. As for the working solution for in vivo experiments, it is recommended to prepare freshly and use it on the same day.
The percentages shown for the solvents indicate their volumetric ratio in the final prepared solution. If precipitation or phase separation occurs during preparation, heat and/or sonication can be used to aid dissolution.

  • Protocol 1

    Add each solvent one by one:  10% DMSO    40% PEG300    5% Tween-80    45% Saline

    Solubility: ≥ 2.5 mg/mL (8.40 mM); Clear solution

    This protocol yields a clear solution of ≥ 2.5 mg/mL (saturation unknown).

    Taking 1 mL working solution as an example, add 100 μL DMSO stock solution (25.0 mg/mL) to 400 μL PEG300, and mix evenly; then add 50 μL Tween-80 and mix evenly; then add 450 μL Saline to adjust the volume to 1 mL.

    Preparation of Saline: Dissolve 0.9 g sodium chloride in ddH₂O and dilute to 100 mL to obtain a clear Saline solution.
  • Protocol 2

    Add each solvent one by one:  10% DMSO    90% (20% SBE-β-CD in Saline)

    Solubility: ≥ 2.5 mg/mL (8.40 mM); Clear solution

    This protocol yields a clear solution of ≥ 2.5 mg/mL (saturation unknown).

    Taking 1 mL working solution as an example, add 100 μL DMSO stock solution (25.0 mg/mL) to 900 μL 20% SBE-β-CD in Saline, and mix evenly.

    Preparation of 20% SBE-β-CD in Saline (4°C, storage for one week): 2 g SBE-β-CD powder is dissolved in 10 mL Saline, completely dissolve until clear.
In Vivo Dissolution Calculator
Please enter the basic information of animal experiments:

Dosage

mg/kg

Animal weight
(per animal)

g

Dosing volume
(per animal)

μL

Number of animals

Recommended: Prepare an additional quantity of animals to account for potential losses during experiments.
Please enter your animal formula composition:
%
DMSO +
+
%
Tween-80 +
%
Saline
Recommended: Keep the proportion of DMSO in working solution below 2% if your animal is weak.
The co-solvents required include: DMSO, . All of co-solvents are available by MedChemExpress (MCE). , Tween 80. All of co-solvents are available by MedChemExpress (MCE).
Calculation results:
Working solution concentration: mg/mL
Method for preparing stock solution: mg drug dissolved in μL  DMSO (Stock solution concentration: mg/mL).

*In solvent : -80°C, 6 months; -20°C, 1 month (sealed storage, away from moisture and light)

The concentration of the stock solution you require exceeds the measured solubility. The following solution is for reference only. If necessary, please contact MedChemExpress (MCE).
Method for preparing in vivo working solution for animal experiments: Take μL DMSO stock solution, add μL . μL , mix evenly, next add μL Tween 80, mix evenly, then add μL Saline.
 If the continuous dosing period exceeds half a month, please choose this protocol carefully.
Please ensure that the stock solution in the first step is dissolved to a clear state, and add co-solvents in sequence. You can use ultrasonic heating (ultrasonic cleaner, recommended frequency 20-40 kHz), vortexing, etc. to assist dissolution.
Purity & Documentation
References
Cell Assay
[3]

Using the same cell preparation, a cytoprotection (cell survival) assay is configured to assess the ability of bimoclomol to protect cells exposed to a lethal stress. To optimize the cell survival determinations, final plating densities for this protocol are reduced to approximately 0.5 million cells/mL. Plated cardiomyocytes are placed in an incubator (37°C, 5% CO2) for 24 h. The plates are removed from the incubator and the media changed to serum free. Separate sets of cells are either heat shocked at 42°C for 1 h or treated as sham (no heat shock). Bimoclomol is then added to individual wells at 0, 0.01, 0.1, 1, 10 and 100 μM and the plates are placed back in the 37°C incubator for 24 h. The plates are removed from the incubator and after another media change, (serum free) all plates are exposed to a lethal heat stress for 2 h in a waterbath set at 47°C. The plates are then placed back in the 37°C incubator overnight (16-18 h). The following morning, cell survival is determined using trypan blue exclusion. Equal volumes of culture medium and trypan blue solution are mixed. After removing the spent media from the wells, the above mixture is added to the wells for 10 min. The cells are then washed three times with cold PBS and counted with an inverted light microscope (10×). The final survival values from this protocol are expressed as the percentage of viable cells per treatment using the formula [(stained cells−total cells)÷total cells]×100.

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

References

Complete Stock Solution Preparation Table

* Please refer to the solubility information to select the appropriate solvent. Once prepared, please aliquot and store the solution to prevent product inactivation from repeated freeze-thaw cycles.
Storage method and period of stock solution: -80°C, 6 months; -20°C, 1 month (sealed storage, away from moisture and light). When stored at -80°C, please use it within 6 months. When stored at -20°C, please use it within 1 month.

Optional Solvent Concentration Solvent Mass 1 mg 5 mg 10 mg 25 mg
DMSO 1 mM 3.3582 mL 16.7909 mL 33.5818 mL 83.9546 mL
5 mM 0.6716 mL 3.3582 mL 6.7164 mL 16.7909 mL
10 mM 0.3358 mL 1.6791 mL 3.3582 mL 8.3955 mL
15 mM 0.2239 mL 1.1194 mL 2.2388 mL 5.5970 mL
20 mM 0.1679 mL 0.8395 mL 1.6791 mL 4.1977 mL
25 mM 0.1343 mL 0.6716 mL 1.3433 mL 3.3582 mL
30 mM 0.1119 mL 0.5597 mL 1.1194 mL 2.7985 mL
40 mM 0.0840 mL 0.4198 mL 0.8395 mL 2.0989 mL
50 mM 0.0672 mL 0.3358 mL 0.6716 mL 1.6791 mL
60 mM 0.0560 mL 0.2798 mL 0.5597 mL 1.3992 mL
80 mM 0.0420 mL 0.2099 mL 0.4198 mL 1.0494 mL
100 mM 0.0336 mL 0.1679 mL 0.3358 mL 0.8395 mL
  • No file chosen (Maximum size is: 1024 Kb)
  • If you have published this work, please enter the PubMed ID.
  • Your name will appear on the site.
Help & FAQs
  • Do most proteins show cross-species activity?

    Species cross-reactivity must be investigated individually for each product. Many human cytokines will produce a nice response in mouse cell lines, and many mouse proteins will show activity on human cells. Other proteins may have a lower specific activity when used in the opposite species.

Your Recently Viewed Products:

Inquiry Online

Your information is safe with us. * Required Fields.

Product Name

 

Salutation

Applicant Name *

 

Email Address *

Phone Number *

 

Organization Name *

Department *

 

Requested quantity *

Country or Region *

     

Remarks

Bulk Inquiry

Inquiry Information

Product Name:
Bimoclomol
Cat. No.:
HY-U00398
Quantity:
MCE Japan Authorized Agent: