Search Result
Results for "
micelles
" in MedChemExpress (MCE) Product Catalog:
174
Biochemical Assay Reagents
2
Isotope-Labeled Compounds
Cat. No. |
Product Name |
Target |
Research Areas |
Chemical Structure |
-
- HY-156197
-
-
-
- HY-111915
-
18:1 PA
|
Liposome
|
Others
|
1,2-Dioleoyl-sn-glycero-3-phosphate sodium salt (18:1 PA) is an anionic lipid that can be used to prepare liposomes, micelles and artificial membranes .
|
-
-
- HY-W155121
-
-
-
- HY-W286073
-
|
Biochemical Assay Reagents
|
Others
|
Hexaethylene glycol decyl ether is a non-ionic surfactant, which forms micelle, and can be utilized in the cosmetics, pharmaceuticals and food industries .
|
-
-
- HY-W441013
-
|
Liposome
|
Others
|
DSPE-PEG-NHS, MW 1000 is an amine reactive phospholipid. The reaction between NHS esters and amines forms a stable amide bond. The polymer is amphiphilic and capable of forming micelles or lipid bilayer in aqueous solution.
|
-
-
- HY-167388
-
|
Biochemical Assay Reagents
|
Others
|
PLLA5000-PEG5000-ALK is a polylactic acid derivative that can form micelles in water. PLLA5000-PEG5000-ALK can be used in drug delivery research .
|
-
-
- HY-167389
-
|
Biochemical Assay Reagents
|
Others
|
PLLA5000-PEG3000-ALK is a polylactic acid derivative that can form micelles in water. PLLA5000-PEG3000-ALK can be used in drug delivery research .
|
-
-
- HY-167390
-
|
Biochemical Assay Reagents
|
Others
|
PLLA5000-PEG2000-ALK is a polylactic acid derivative that can form micelles in water. PLLA5000-PEG2000-ALK can be used in drug delivery research .
|
-
-
- HY-167391
-
|
Biochemical Assay Reagents
|
Others
|
PLLA5000-PEG1000-ALK is a polylactic acid derivative that can form micelles in water. PLLA5000-PEG1000-ALK can be used in drug delivery research .
|
-
-
- HY-167392
-
|
Biochemical Assay Reagents
|
Others
|
PLLA4000-PEG5000-ALK is a polylactic acid derivative that can form micelles in water. PLLA4000-PEG5000-ALK can be used in drug delivery research .
|
-
-
- HY-167393
-
|
Biochemical Assay Reagents
|
Others
|
PLLA4000-PEG3000-ALK is a polylactic acid derivative that can form micelles in water. PLLA4000-PEG3000-ALK can be used in drug delivery research .
|
-
-
- HY-167394
-
|
Biochemical Assay Reagents
|
Others
|
PLLA4000-PEG2000-ALK is a polylactic acid derivative that can form micelles in water. PLLA4000-PEG2000-ALK can be used in drug delivery research .
|
-
-
- HY-167395
-
|
Biochemical Assay Reagents
|
Others
|
PLLA4000-PEG1000-ALK is a polylactic acid derivative that can form micelles in water. PLLA4000-PEG1000-ALK can be used in drug delivery research .
|
-
-
- HY-167396
-
|
Biochemical Assay Reagents
|
Others
|
PLLA3000-PEG5000-ALK is a polylactic acid derivative that can form micelles in water. PLLA3000-PEG5000-ALK can be used in drug delivery research .
|
-
-
- HY-167397
-
|
Biochemical Assay Reagents
|
Others
|
PLLA3000-PEG3000-ALK is a polylactic acid derivative that can form micelles in water. PLLA3000-PEG3000-ALK can be used in drug delivery research .
|
-
-
- HY-167398
-
|
Biochemical Assay Reagents
|
Others
|
PLLA3000-PEG2000-ALK is a polylactic acid derivative that can form micelles in water. PLLA3000-PEG2000-ALK can be used in drug delivery research .
|
-
-
- HY-167399
-
|
Biochemical Assay Reagents
|
Others
|
PLLA3000-PEG1000-ALK is a polylactic acid derivative that can form micelles in water. PLLA3000-PEG1000-ALK can be used in drug delivery research .
|
-
-
- HY-167400
-
|
Biochemical Assay Reagents
|
Others
|
PLLA2000-PEG5000-ALK is a polylactic acid derivative that can form micelles in water. PLLA2000-PEG5000-ALK can be used in drug delivery research .
|
-
-
- HY-167401
-
|
Biochemical Assay Reagents
|
Others
|
PLLA2000-PEG3000-ALK is a polylactic acid derivative that can form micelles in water. PLLA2000-PEG3000-ALK can be used in drug delivery research .
|
-
-
- HY-167402
-
|
Biochemical Assay Reagents
|
Others
|
PLLA2000-PEG2000-ALK is a polylactic acid derivative that can form micelles in water. PLLA2000-PEG2000-ALK can be used in drug delivery research .
|
-
-
- HY-167403
-
|
Biochemical Assay Reagents
|
Others
|
PLLA2000-PEG1000-ALK is a polylactic acid derivative that can form micelles in water. PLLA2000-PEG1000-ALK can be used in drug delivery research .
|
-
-
- HY-167404
-
|
Biochemical Assay Reagents
|
Others
|
PLLA1000-PEG5000-ALK is a polylactic acid derivative that can form micelles in water. PLLA1000-PEG5000-ALK can be used in drug delivery research .
|
-
-
- HY-167405
-
|
Biochemical Assay Reagents
|
Others
|
PLLA1000-PEG3000-ALK is a polylactic acid derivative that can form micelles in water. PLLA1000-PEG3000-ALK can be used in drug delivery research .
|
-
-
- HY-167406
-
|
Biochemical Assay Reagents
|
Others
|
PLLA1000-PEG2000-ALK is a polylactic acid derivative that can form micelles in water. PLLA1000-PEG2000-ALK can be used in drug delivery research .
|
-
-
- HY-167407
-
|
Biochemical Assay Reagents
|
Others
|
PLLA1000-PEG1000-ALK is a polylactic acid derivative that can form micelles in water. PLLA1000-PEG1000-ALK can be used in drug delivery research .
|
-
-
- HY-167408
-
|
Biochemical Assay Reagents
|
Others
|
PLLA10000-PEG5000-ALK is a polylactic acid derivative that can form micelles in water. PLLA10000-PEG5000-ALK can be used in drug delivery research .
|
-
-
- HY-167409
-
|
Biochemical Assay Reagents
|
Others
|
PLLA10000-PEG3000-ALK is a polylactic acid derivative that can form micelles in water. PLLA10000-PEG3000-ALK can be used in drug delivery research .
|
-
-
- HY-167410
-
|
Biochemical Assay Reagents
|
Others
|
PLLA10000-PEG2000-ALK is a polylactic acid derivative that can form micelles in water. PLLA10000-PEG2000-ALK can be used in drug delivery research .
|
-
-
- HY-W440699
-
|
Biochemical Assay Reagents
|
Others
|
Cholesterol-PEG-acid (MW 3400) is a cholesterol PEG derivative that can form micelles through molecular self-assembly and has a longer half-life in vivo. Cholesterol-PEG-acid (MW 3400) can be used in drug delivery research .
|
-
-
- HY-W440700
-
|
Biochemical Assay Reagents
|
Others
|
Cholesterol-PEG-acid (MW 5000) is a cholesterol PEG derivative that can form micelles through molecular self-assembly and has a longer half-life in vivo. Cholesterol-PEG-acid (MW 5000) can be used in drug delivery research .
|
-
-
- HY-W591891
-
|
Biochemical Assay Reagents
|
Others
|
Cholesterol-PEG-acid (MW 1000) is a cholesterol PEG derivative that can form micelles through molecular self-assembly and has a longer half-life in vivo. Cholesterol-PEG-acid (MW 1000) can be used in drug delivery research .
|
-
-
- HY-W440704
-
|
Biochemical Assay Reagents
|
Others
|
Cholesterol-PEG-NHS (MW 5000) is a cholesterol PEG derivative that can form micelles through molecular self-assembly and has a longer half-life in vivo. Cholesterol-PEG-NHS (MW 5000) can be used in drug delivery research .
|
-
-
- HY-W440689
-
|
Biochemical Assay Reagents
|
Others
|
Cholesterol-PEG-amine (MW 1000) is a cholesterol PEG derivative that can form micelles through molecular self-assembly and has a longer half-life in vivo. Cholesterol-PEG-amine (MW 1000) can be used in drug delivery research .
|
-
-
- HY-W440691
-
|
Biochemical Assay Reagents
|
Others
|
Cholesterol-PEG-amine (MW 3400) is a cholesterol PEG derivative that can form micelles through molecular self-assembly and has a longer half-life in vivo. Cholesterol-PEG-amine (MW 3400) can be used in drug delivery research .
|
-
-
- HY-W440692
-
|
Biochemical Assay Reagents
|
Others
|
Cholesterol-PEG-amine (MW 5000) is a cholesterol PEG derivative that can form micelles through molecular self-assembly and has a longer half-life in vivo. Cholesterol-PEG-amine (MW 5000) can be used in drug delivery research .
|
-
-
- HY-W440693
-
|
Biochemical Assay Reagents
|
Others
|
Cholesterol-PEG-azide (MW 1000) is a cholesterol PEG derivative that can form micelles through molecular self-assembly and has a longer half-life in vivo. Cholesterol-PEG-azide (MW 1000) can be used in drug delivery research .
|
-
-
- HY-W440695
-
|
Biochemical Assay Reagents
|
Others
|
Cholesterol-PEG-azide (MW 3400) is a cholesterol PEG derivative that can form micelles through molecular self-assembly and has a longer half-life in vivo. Cholesterol-PEG-azide (MW 3400) can be used in drug delivery research .
|
-
-
- HY-W440696
-
|
Biochemical Assay Reagents
|
Others
|
Cholesterol-PEG-azide (MW 5000) is a cholesterol PEG derivative that can form micelles through molecular self-assembly and has a longer half-life in vivo. Cholesterol-PEG-azide (MW 5000) can be used in drug delivery research .
|
-
-
- HY-W440697
-
|
Biochemical Assay Reagents
|
Others
|
Cholesterol-PEG-NHS (MW 1000) is a cholesterol PEG derivative that can form micelles through molecular self-assembly and has a longer half-life in vivo. Cholesterol-PEG-NHS (MW 1000) can be used in drug delivery research .
|
-
-
- HY-W440702
-
|
Biochemical Assay Reagents
|
Others
|
Cholesterol-PEG-NHS (MW 2000) is a cholesterol PEG derivative that can form micelles through molecular self-assembly and has a longer half-life in vivo. Cholesterol-PEG-NHS (MW 2000) can be used in drug delivery research .
|
-
-
- HY-W440703
-
|
Biochemical Assay Reagents
|
Others
|
Cholesterol-PEG-NHS (MW 3400) is a cholesterol PEG derivative that can form micelles through molecular self-assembly and has a longer half-life in vivo. Cholesterol-PEG-NHS (MW 3400) can be used in drug delivery research .
|
-
-
- HY-W440705
-
|
Biochemical Assay Reagents
|
Others
|
Cholesterol-PEG-alcohol (MW 1000) is a cholesterol PEG derivative that can form micelles through molecular self-assembly and has a longer half-life in vivo. Cholesterol-PEG-alcohol (MW 1000) can be used in drug delivery research .
|
-
-
- HY-W440707
-
|
Biochemical Assay Reagents
|
Others
|
Cholesterol-PEG-alcohol (MW 3400) is a cholesterol PEG derivative that can form micelles through molecular self-assembly and has a longer half-life in vivo. Cholesterol-PEG-alcohol (MW 3400) can be used in drug delivery research .
|
-
-
- HY-W440708
-
|
Biochemical Assay Reagents
|
Others
|
Cholesterol-PEG-alcohol (MW 5000) is a cholesterol PEG derivative that can form micelles through molecular self-assembly and has a longer half-life in vivo. Cholesterol-PEG-alcohol (MW 5000) can be used in drug delivery research .
|
-
-
- HY-W440709
-
|
Biochemical Assay Reagents
|
Others
|
Cholesterol-PEG-alcohol (MW 10000) is a cholesterol PEG derivative that can form micelles through molecular self-assembly and has a longer half-life in vivo. Cholesterol-PEG-alcohol (MW 10000) can be used in drug delivery research .
|
-
-
- HY-W440710
-
|
Biochemical Assay Reagents
|
Others
|
Cholesterol-PEG-Biotin (MW 1000) is a cholesterol PEG derivative that can form micelles through molecular self-assembly and has a longer half-life in vivo. Cholesterol-PEG-Biotin (MW 1000) can be used in drug delivery research .
|
-
-
- HY-W440712
-
|
Biochemical Assay Reagents
|
Others
|
Cholesterol-PEG-Biotin (MW 3400) is a cholesterol PEG derivative that can form micelles through molecular self-assembly and has a longer half-life in vivo. Cholesterol-PEG-Biotin (MW 3400) can be used in drug delivery research .
|
-
-
- HY-W440713
-
|
Biochemical Assay Reagents
|
Others
|
Cholesterol-PEG-Biotin (MW 5000) is a cholesterol PEG derivative that can form micelles through molecular self-assembly and has a longer half-life in vivo. Cholesterol-PEG-Biotin (MW 5000) can be used in drug delivery research .
|
-
-
- HY-W440714
-
|
Biochemical Assay Reagents
|
Others
|
Cholesterol-PEG-Folate (MW 1000) is a cholesterol PEG derivative that can form micelles through molecular self-assembly and has a longer half-life in vivo. Cholesterol-PEG-Folate (MW 1000) can be used in drug delivery research .
|
-
-
- HY-W440716
-
|
Biochemical Assay Reagents
|
Others
|
Cholesterol-PEG-Folate (MW 3400) is a cholesterol PEG derivative that can form micelles through molecular self-assembly and has a longer half-life in vivo. Cholesterol-PEG-Folate (MW 3400) can be used in drug delivery research .
|
-
- HY-W440717
-
|
Biochemical Assay Reagents
|
Others
|
Cholesterol-PEG-Folate (MW 5000) is a cholesterol PEG derivative that can form micelles through molecular self-assembly and has a longer half-life in vivo. Cholesterol-PEG-Folate (MW 5000) can be used in drug delivery research .
|
-
- HY-W440718
-
|
Biochemical Assay Reagents
|
Others
|
Cholesterol-PEG-Mal (MW 1000) is a cholesterol PEG derivative that can form micelles through molecular self-assembly and has a longer half-life in vivo. Cholesterol-PEG-Mal (MW 1000) can be used in drug delivery research .
|
-
- HY-W440720
-
|
Biochemical Assay Reagents
|
Others
|
Cholesterol-PEG-Mal (MW 3400) is a cholesterol PEG derivative that can form micelles through molecular self-assembly and has a longer half-life in vivo. Cholesterol-PEG-Mal (MW 3400) can be used in drug delivery research .
|
-
- HY-W440721
-
|
Biochemical Assay Reagents
|
Others
|
Cholesterol-PEG-Mal (MW 5000) is a cholesterol PEG derivative that can form micelles through molecular self-assembly and has a longer half-life in vivo. Cholesterol-PEG-Mal (MW 5000) can be used in drug delivery research .
|
-
- HY-W440723
-
|
Biochemical Assay Reagents
|
Others
|
Cholesterol-PEG-Thiol (MW 2000) is a cholesterol PEG derivative that can form micelles through molecular self-assembly and has a longer half-life in vivo. Cholesterol-PEG-Thiol (MW 2000) can be used in drug delivery research .
|
-
- HY-W440725
-
|
Biochemical Assay Reagents
|
Others
|
Cholesterol-PEG-Thiol (MW 5000) is a cholesterol PEG derivative that can form micelles through molecular self-assembly and has a longer half-life in vivo. Cholesterol-PEG-Thiol (MW 5000) can be used in drug delivery research .
|
-
- HY-W440726
-
|
Biochemical Assay Reagents
|
Others
|
Cholesterol-PEG-Vinylsulfone (MW 1000) is a cholesterol PEG derivative that can form micelles through molecular self-assembly and has a longer half-life in vivo. Cholesterol-PEG-Vinylsulfone (MW 1000) can be used in drug delivery research .
|
-
- HY-W440728
-
|
Biochemical Assay Reagents
|
Others
|
Cholesterol-PEG-Vinylsulfone (MW 3400) is a cholesterol PEG derivative that can form micelles through molecular self-assembly and has a longer half-life in vivo. Cholesterol-PEG-Vinylsulfone (MW 3400) can be used in drug delivery research .
|
-
- HY-W440729
-
|
Biochemical Assay Reagents
|
Others
|
Cholesterol-PEG-Vinylsulfone (MW 5000) is a cholesterol PEG derivative that can form micelles through molecular self-assembly and has a longer half-life in vivo. Cholesterol-PEG-Vinylsulfone (MW 5000) can be used in drug delivery research .
|
-
- HY-W591912
-
|
Biochemical Assay Reagents
|
Others
|
Cholesterol-PEG-methoxy (MW 1000) is a cholesterol PEG derivative that can form micelles through molecular self-assembly and has a longer half-life in vivo. Cholesterol-PEG-methoxy (MW 1000) can be used in drug delivery research .
|
-
- HY-W591914
-
|
Biochemical Assay Reagents
|
Others
|
Cholesterol-PEG-methoxy (MW 5000) is a cholesterol PEG derivative that can form micelles through molecular self-assembly and has a longer half-life in vivo. Cholesterol-PEG-methoxy (MW 5000) can be used in drug delivery research .
|
-
- HY-167294
-
|
Biochemical Assay Reagents
|
Others
|
PLLA5000-PEG5000-Thiol is a polylactic acid derivative that forms micelles in water and initiates biodegradation by attacking ester bonds through hydrolysis. PLLA5000-PEG5000-Thiol can be used in drug delivery research .
|
-
- HY-167295
-
|
Biochemical Assay Reagents
|
Others
|
PLLA5000-PEG3000-Thiol is a polylactic acid derivative that forms micelles in water and initiates biodegradation by attacking ester bonds through hydrolysis. PLLA5000-PEG3000-Thiol can be used in drug delivery research .
|
-
- HY-167296
-
|
Biochemical Assay Reagents
|
Others
|
PLLA5000-PEG2000-Thiol is a polylactic acid derivative that forms micelles in water and initiates biodegradation by attacking ester bonds through hydrolysis. PLLA5000-PEG2000-Thiol can be used in drug delivery research .
|
-
- HY-167297
-
|
Biochemical Assay Reagents
|
Others
|
PLLA5000-PEG1000-Thiol is a polylactic acid derivative that forms micelles in water and initiates biodegradation by attacking ester bonds through hydrolysis. PLLA5000-PEG1000-Thiol can be used in drug delivery research .
|
-
- HY-167298
-
|
Biochemical Assay Reagents
|
Others
|
PLLA4000-PEG5000-Thiol is a polylactic acid derivative that forms micelles in water and initiates biodegradation by attacking ester bonds through hydrolysis. PLLA4000-PEG5000-Thiol can be used in drug delivery research .
|
-
- HY-167299
-
|
Biochemical Assay Reagents
|
Others
|
PLLA4000-PEG3000-Thiol is a polylactic acid derivative that forms micelles in water and initiates biodegradation by attacking ester bonds through hydrolysis. PLLA4000-PEG3000-Thiol can be used in drug delivery research .
|
-
- HY-167300
-
|
Biochemical Assay Reagents
|
Others
|
PLLA4000-PEG2000-Thiol is a polylactic acid derivative that forms micelles in water and initiates biodegradation by attacking ester bonds through hydrolysis. PLLA4000-PEG2000-Thiol can be used in drug delivery research .
|
-
- HY-167301
-
|
Biochemical Assay Reagents
|
Others
|
PLLA4000-PEG1000-Thiol is a polylactic acid derivative that forms micelles in water and initiates biodegradation by attacking ester bonds through hydrolysis. PLLA4000-PEG1000-Thiol can be used in drug delivery research .
|
-
- HY-167302
-
|
Biochemical Assay Reagents
|
Others
|
PLLA3000-PEG5000-Thiol is a polylactic acid derivative that forms micelles in water and initiates biodegradation by attacking ester bonds through hydrolysis. PLLA3000-PEG5000-Thiol can be used in drug delivery research .
|
-
- HY-167303
-
|
Biochemical Assay Reagents
|
Others
|
PLLA3000-PEG3000-Thiol is a polylactic acid derivative that forms micelles in water and initiates biodegradation by attacking ester bonds through hydrolysis. PLLA3000-PEG3000-Thiol can be used in drug delivery research .
|
-
- HY-167304
-
|
Biochemical Assay Reagents
|
Others
|
PLLA3000-PEG2000-Thiol is a polylactic acid derivative that forms micelles in water and initiates biodegradation by attacking ester bonds through hydrolysis. PLLA3000-PEG2000-Thiol can be used in drug delivery research .
|
-
- HY-167305
-
|
Biochemical Assay Reagents
|
Others
|
PLLA3000-PEG1000-Thiol is a polylactic acid derivative that forms micelles in water and initiates biodegradation by attacking ester bonds through hydrolysis. PLLA3000-PEG1000-Thiol can be used in drug delivery research .
|
-
- HY-167306
-
|
Biochemical Assay Reagents
|
Others
|
PLLA2000-PEG5000-Thiol is a polylactic acid derivative that forms micelles in water and initiates biodegradation by attacking ester bonds through hydrolysis. PLLA2000-PEG5000-Thiol can be used in drug delivery research .
|
-
- HY-167307
-
|
Biochemical Assay Reagents
|
Others
|
PLLA2000-PEG3000-Thiol is a polylactic acid derivative that forms micelles in water and initiates biodegradation by attacking ester bonds through hydrolysis. PLLA2000-PEG3000-Thiol can be used in drug delivery research .
|
-
- HY-167308
-
|
Biochemical Assay Reagents
|
Others
|
PLLA2000-PEG2000-Thiol is a polylactic acid derivative that forms micelles in water and initiates biodegradation by attacking ester bonds through hydrolysis. PLLA2000-PEG2000-Thiol can be used in drug delivery research .
|
-
- HY-167309
-
|
Biochemical Assay Reagents
|
Others
|
PLLA2000-PEG1000-Thiol is a polylactic acid derivative that forms micelles in water and initiates biodegradation by attacking ester bonds through hydrolysis. PLLA2000-PEG1000-Thiol can be used in drug delivery research .
|
-
- HY-167310
-
|
Biochemical Assay Reagents
|
Others
|
PLLA1000-PEG5000-Thiol is a polylactic acid derivative that forms micelles in water and initiates biodegradation by attacking ester bonds through hydrolysis. PLLA1000-PEG5000-Thiol can be used in drug delivery research .
|
-
- HY-167311
-
|
Biochemical Assay Reagents
|
Others
|
PLLA1000-PEG3000-Thiol is a polylactic acid derivative that forms micelles in water and initiates biodegradation by attacking ester bonds through hydrolysis. PLLA1000-PEG3000-Thiol can be used in drug delivery research .
|
-
- HY-167312
-
|
Biochemical Assay Reagents
|
Others
|
PLLA1000-PEG2000-Thiol is a polylactic acid derivative that forms micelles in water and initiates biodegradation by attacking ester bonds through hydrolysis. PLLA1000-PEG2000-Thiol can be used in drug delivery research .
|
-
- HY-167313
-
|
Biochemical Assay Reagents
|
Others
|
PLLA1000-PEG1000-Thiol is a polylactic acid derivative that forms micelles in water and initiates biodegradation by attacking ester bonds through hydrolysis. PLLA1000-PEG1000-Thiol can be used in drug delivery research .
|
-
- HY-167314
-
|
Biochemical Assay Reagents
|
Others
|
PLLA10000-PEG5000-Thiol is a polylactic acid derivative that forms micelles in water and initiates biodegradation by attacking ester bonds through hydrolysis. PLLA10000-PEG5000-Thiol can be used in drug delivery research .
|
-
- HY-167315
-
|
Biochemical Assay Reagents
|
Others
|
PLLA10000-PEG3000-Thiol is a polylactic acid derivative that forms micelles in water and initiates biodegradation by attacking ester bonds through hydrolysis. PLLA10000-PEG3000-Thiol can be used in drug delivery research .
|
-
- HY-167316
-
|
Biochemical Assay Reagents
|
Others
|
PLLA10000-PEG2000-Thiol is a polylactic acid derivative that forms micelles in water and initiates biodegradation by attacking ester bonds through hydrolysis. PLLA10000-PEG2000-Thiol can be used in drug delivery research .
|
-
- HY-167317
-
|
Biochemical Assay Reagents
|
Others
|
PLLA10000-PEG1000-Thiol is a polylactic acid derivative that forms micelles in water and initiates biodegradation by attacking ester bonds through hydrolysis. PLLA10000-PEG1000-Thiol can be used in drug delivery research .
|
-
- HY-167318
-
|
Biochemical Assay Reagents
|
Others
|
PLLA5000-PEG5000-SPDP is a polylactic acid derivative that can form micelles in water and the SPDP moiety can react with thiols. PLLA5000-PEG5000-SPDP can be used in drug delivery research .
|
-
- HY-167319
-
|
Biochemical Assay Reagents
|
Others
|
PLLA5000-PEG3000-SPDP is a polylactic acid derivative that can form micelles in water and the SPDP moiety can react with thiols. PLLA5000-PEG3000-SPDP can be used in drug delivery research .
|
-
- HY-167320
-
|
Biochemical Assay Reagents
|
Others
|
PLLA5000-PEG2000-SPDP is a polylactic acid derivative that can form micelles in water and the SPDP moiety can react with thiols. PLLA5000-PEG2000-SPDP can be used in drug delivery research .
|
-
- HY-167321
-
|
Biochemical Assay Reagents
|
Others
|
PLLA5000-PEG1000-SPDP is a polylactic acid derivative that can form micelles in water and the SPDP moiety can react with thiols. PLLA5000-PEG1000-SPDP can be used in drug delivery research .
|
-
- HY-167322
-
|
Biochemical Assay Reagents
|
Others
|
PLLA4000-PEG5000-SPDP is a polylactic acid derivative that can form micelles in water and the SPDP moiety can react with thiols. PLLA4000-PEG5000-SPDP can be used in drug delivery research .
|
-
- HY-167323
-
|
Biochemical Assay Reagents
|
Others
|
PLLA4000-PEG3000-SPDP is a polylactic acid derivative that can form micelles in water and the SPDP moiety can react with thiols. PLLA4000-PEG3000-SPDP can be used in drug delivery research .
|
-
- HY-167324
-
|
Biochemical Assay Reagents
|
Others
|
PLLA4000-PEG2000-SPDP is a polylactic acid derivative that can form micelles in water and the SPDP moiety can react with thiols. PLLA4000-PEG2000-SPDP can be used in drug delivery research .
|
-
- HY-167325
-
|
Biochemical Assay Reagents
|
Others
|
PLLA4000-PEG1000-SPDP is a polylactic acid derivative that can form micelles in water and the SPDP moiety can react with thiols. PLLA4000-PEG1000-SPDP can be used in drug delivery research .
|
-
- HY-167326
-
|
Biochemical Assay Reagents
|
Others
|
PLLA3000-PEG5000-SPDP is a polylactic acid derivative that can form micelles in water and the SPDP moiety can react with thiols. PLLA3000-PEG5000-SPDP can be used in drug delivery research .
|
-
- HY-167327
-
|
Biochemical Assay Reagents
|
Others
|
PLLA3000-PEG3000-SPDP is a polylactic acid derivative that can form micelles in water and the SPDP moiety can react with thiols. PLLA3000-PEG3000-SPDP can be used in drug delivery research .
|
-
- HY-167328
-
|
Biochemical Assay Reagents
|
Others
|
PLLA3000-PEG2000-SPDP is a polylactic acid derivative that can form micelles in water and the SPDP moiety can react with thiols. PLLA3000-PEG2000-SPDP can be used in drug delivery research .
|
-
- HY-167329
-
|
Biochemical Assay Reagents
|
Others
|
PLLA3000-PEG1000-SPDP is a polylactic acid derivative that can form micelles in water and the SPDP moiety can react with thiols. PLLA3000-PEG1000-SPDP can be used in drug delivery research .
|
-
- HY-167330
-
|
Biochemical Assay Reagents
|
Others
|
PLLA2000-PEG5000-SPDP is a polylactic acid derivative that can form micelles in water and the SPDP moiety can react with thiols. PLLA2000-PEG5000-SPDP can be used in drug delivery research .
|
-
- HY-167331
-
|
Biochemical Assay Reagents
|
Others
|
PLLA2000-PEG3000-SPDP is a polylactic acid derivative that can form micelles in water and the SPDP moiety can react with thiols. PLLA2000-PEG3000-SPDP can be used in drug delivery research .
|
-
- HY-167332
-
|
Biochemical Assay Reagents
|
Others
|
PLLA2000-PEG2000-SPDP is a polylactic acid derivative that can form micelles in water and the SPDP moiety can react with thiols. PLLA2000-PEG2000-SPDP can be used in drug delivery research .
|
-
- HY-167333
-
|
Biochemical Assay Reagents
|
Others
|
PLLA2000-PEG1000-SPDP is a polylactic acid derivative that can form micelles in water and the SPDP moiety can react with thiols. PLLA2000-PEG1000-SPDP can be used in drug delivery research .
|
-
- HY-167334
-
|
Biochemical Assay Reagents
|
Others
|
PLLA1000-PEG5000-SPDP is a polylactic acid derivative that can form micelles in water and the SPDP moiety can react with thiols. PLLA1000-PEG5000-SPDP can be used in drug delivery research .
|
-
- HY-167335
-
|
Biochemical Assay Reagents
|
Others
|
PLLA1000-PEG3000-SPDP is a polylactic acid derivative that can form micelles in water and the SPDP moiety can react with thiols. PLLA1000-PEG3000-SPDP can be used in drug delivery research .
|
-
- HY-167336
-
|
Biochemical Assay Reagents
|
Others
|
PLLA1000-PEG2000-SPDP is a polylactic acid derivative that can form micelles in water and the SPDP moiety can react with thiols. PLLA1000-PEG2000-SPDP can be used in drug delivery research .
|
-
- HY-167337
-
|
Biochemical Assay Reagents
|
Others
|
PLLA1000-PEG1000-SPDP is a polylactic acid derivative that can form micelles in water and the SPDP moiety can react with thiols. PLLA1000-PEG1000-SPDP can be used in drug delivery research .
|
-
- HY-167338
-
|
Biochemical Assay Reagents
|
Others
|
PLLA10000-PEG5000-SPDP is a polylactic acid derivative that can form micelles in water and the SPDP moiety can react with thiols. PLLA10000-PEG5000-SPDP can be used in drug delivery research .
|
-
- HY-167339
-
|
Biochemical Assay Reagents
|
Others
|
PLLA10000-PEG3000-SPDP is a polylactic acid derivative that can form micelles in water and the SPDP moiety can react with thiols. PLLA10000-PEG3000-SPDP can be used in drug delivery research .
|
-
- HY-167340
-
|
Biochemical Assay Reagents
|
Others
|
PLLA10000-PEG2000-SPDP is a polylactic acid derivative that can form micelles in water and the SPDP moiety can react with thiols. PLLA10000-PEG2000-SPDP can be used in drug delivery research .
|
-
- HY-167341
-
|
Biochemical Assay Reagents
|
Others
|
PLLA10000-PEG1000-SPDP is a polylactic acid derivative that can form micelles in water and the SPDP moiety can react with thiols. PLLA10000-PEG1000-SPDP can be used in drug delivery research .
|
-
- HY-167370
-
|
Biochemical Assay Reagents
|
Others
|
PLLA5000-PEG5000-BIO is a polylactic acid derivative that can form micelles in water. In addition, PLLA5000-PEG5000-BIO can bind tightly to avidin or streptavidin for protein labeling. PLLA5000-PEG5000-BIO can be used in drug delivery research .
|
-
- HY-167371
-
|
Biochemical Assay Reagents
|
Others
|
PLLA5000-PEG2000-BIO is a polylactic acid derivative that can form micelles in water. In addition, PLLA5000-PEG2000-BIO can bind tightly to avidin or streptavidin for protein labeling. PLLA5000-PEG2000-BIO can be used in drug delivery research .
|
-
- HY-167372
-
|
Biochemical Assay Reagents
|
Others
|
PLLA5000-PEG1000-BIO is a polylactic acid derivative that can form micelles in water. In addition, PLLA5000-PEG1000-BIO can bind tightly to avidin or streptavidin for protein labeling. PLLA5000-PEG1000-BIO can be used in drug delivery research .
|
-
- HY-167373
-
|
Biochemical Assay Reagents
|
Others
|
PLLA4000-PEG5000-BIO is a polylactic acid derivative that can form micelles in water. In addition, PLLA4000-PEG5000-BIO can bind tightly to avidin or streptavidin for protein labeling. PLLA4000-PEG5000-BIO can be used in drug delivery research .
|
-
- HY-167374
-
|
Biochemical Assay Reagents
|
Others
|
PLLA4000-PEG2000-BIO is a polylactic acid derivative that can form micelles in water. In addition, PLLA4000-PEG2000-BIO can bind tightly to avidin or streptavidin for protein labeling. PLLA4000-PEG2000-BIO can be used in drug delivery research .
|
-
- HY-167375
-
|
Biochemical Assay Reagents
|
Others
|
PLLA4000-PEG1000-BIO is a polylactic acid derivative that can form micelles in water. In addition, PLLA4000-PEG1000-BIO can bind tightly to avidin or streptavidin for protein labeling. PLLA4000-PEG1000-BIO can be used in drug delivery research .
|
-
- HY-167376
-
|
Biochemical Assay Reagents
|
Others
|
PLLA3000-PEG5000-BIO is a polylactic acid derivative that can form micelles in water. In addition, PLLA3000-PEG5000-BIO can bind tightly to avidin or streptavidin for protein labeling. PLLA3000-PEG5000-BIO can be used in drug delivery research .
|
-
- HY-167377
-
|
Biochemical Assay Reagents
|
Others
|
PLLA3000-PEG2000-BIO is a polylactic acid derivative that can form micelles in water. In addition, PLLA3000-PEG2000-BIO can bind tightly to avidin or streptavidin for protein labeling. PLLA3000-PEG2000-BIO can be used in drug delivery research .
|
-
- HY-167378
-
|
Biochemical Assay Reagents
|
Others
|
PLLA3000-PEG1000-BIO is a polylactic acid derivative that can form micelles in water. In addition, PLLA3000-PEG1000-BIO can bind tightly to avidin or streptavidin for protein labeling. PLLA3000-PEG1000-BIO can be used in drug delivery research .
|
-
- HY-167379
-
|
Biochemical Assay Reagents
|
Others
|
PLLA2000-PEG5000-BIO is a polylactic acid derivative that can form micelles in water. In addition, PLLA2000-PEG5000-BIO can bind tightly to avidin or streptavidin for protein labeling. PLLA2000-PEG5000-BIO can be used in drug delivery research .
|
-
- HY-167380
-
|
Biochemical Assay Reagents
|
Others
|
PLLA2000-PEG2000-BIO is a polylactic acid derivative that can form micelles in water. In addition, PLLA2000-PEG2000-BIO can bind tightly to avidin or streptavidin for protein labeling. PLLA2000-PEG2000-BIO can be used in drug delivery research .
|
-
- HY-167381
-
|
Biochemical Assay Reagents
|
Others
|
PLLA2000-PEG1000-BIO is a polylactic acid derivative that can form micelles in water. In addition, PLLA2000-PEG1000-BIO can bind tightly to avidin or streptavidin for protein labeling. PLLA2000-PEG1000-BIO can be used in drug delivery research .
|
-
- HY-167382
-
|
Biochemical Assay Reagents
|
Others
|
PLLA1000-PEG5000-BIO is a polylactic acid derivative that can form micelles in water. In addition, PLLA1000-PEG5000-BIO can bind tightly to avidin or streptavidin for protein labeling. PLLA1000-PEG5000-BIO can be used in drug delivery research .
|
-
- HY-167383
-
|
Biochemical Assay Reagents
|
Others
|
PLLA1000-PEG2000-BIO is a polylactic acid derivative that can form micelles in water. In addition, PLLA1000-PEG2000-BIO can bind tightly to avidin or streptavidin for protein labeling. PLLA1000-PEG2000-BIO can be used in drug delivery research .
|
-
- HY-167384
-
|
Biochemical Assay Reagents
|
Others
|
PLLA1000-PEG1000-BIO is a polylactic acid derivative that can form micelles in water. In addition, PLLA1000-PEG1000-BIO can bind tightly to avidin or streptavidin for protein labeling. PLLA1000-PEG1000-BIO can be used in drug delivery research .
|
-
- HY-167385
-
|
Biochemical Assay Reagents
|
Others
|
PLLA10000-PEG5000-BIO is a polylactic acid derivative that can form micelles in water. In addition, PLLA10000-PEG5000-BIO can bind tightly to avidin or streptavidin for protein labeling. PLLA10000-PEG5000-BIO can be used in drug delivery research .
|
-
- HY-167386
-
|
Biochemical Assay Reagents
|
Others
|
PLLA10000-PEG2000-BIO is a polylactic acid derivative that can form micelles in water. In addition, PLLA10000-PEG2000-BIO can bind tightly to avidin or streptavidin for protein labeling. PLLA10000-PEG2000-BIO can be used in drug delivery research .
|
-
- HY-167387
-
|
Biochemical Assay Reagents
|
Others
|
PLLA10000-PEG1000-BIO is a polylactic acid derivative that can form micelles in water. In addition, PLLA10000-PEG1000-BIO can bind tightly to avidin or streptavidin for protein labeling. PLLA10000-PEG1000-BIO can be used in drug delivery research .
|
-
- HY-W013205
-
|
Biochemical Assay Reagents
|
Others
|
Bis(4-nitrophenyl) phosphate is a catalyst for metal micelles and can catalyze the hydrolysis of (4-nitrophenyl) phosphate. Bis(4-nitrophenyl) phosphate is also an effective catalyst for ring-opening polymerization (ROP), which can achieve controlled polymerization of β-butyrolactone (β-BL) ring-opening and can be used to prepare diembedded polymers without quenching. segment copolymer .
|
-
- HY-W013205R
-
|
Biochemical Assay Reagents
|
Others
|
Bis(4-nitrophenyl) phosphate (Standard) is the analytical standard of Bis(4-nitrophenyl) phosphate. This product is intended for research and analytical applications. Bis(4-nitrophenyl) phosphate is a catalyst for metal micelles and can catalyze the hydrolysis of (4-nitrophenyl) phosphate. Bis(4-nitrophenyl) phosphate is also an effective catalyst for ring-opening polymerization (ROP), which can achieve controlled polymerization of β-butyrolactone (β-BL) ring-opening and can be used to prepare diembedded polymers without quenching. segment copolymer .
|
-
- HY-W590593
-
|
Liposome
|
Cancer
|
mPEG-Cholesterol,MW 2000 is a PEG derivative which self-assembles in water to form micelle-like structure. The cholesterol tail can be used to encapsulate hydrophobic drugs while the PEG chain ehances the water solubility of the micelles.
|
-
- HY-W591913
-
|
Liposome
|
Cancer
|
Cholesterol-PEG-methoxy, MW 2000 is a PEG derivative which self-assembles in water to form micelle-like structure. The cholesterol tail can be used to encapsulate hydrophobic drugs while the PEG chain ehances the water solubility of the micelles.
|
-
- HY-W010851
-
-
- HY-W040258
-
-
- HY-142979
-
|
Liposome
|
Others
|
DSPE-PEG 2000 is a PEG-lipid that can be used to form micelles as nanoparticles for drug delivery .
|
-
- HY-155880
-
mPEG-NH2 (MW 350)
|
Biochemical Assay Reagents
|
Cancer
|
mPEG-amine (MW 350) can synthesize folate-conjugated polymer micelles for encapsulation of anticancer agent 9-nitrocamptothecin (HY-16560). folate-conjugated polymer micelles are effective carriers of insoluble anticancer drugs, which can avoid macrophages and play a role in endocytosis of tumor cells mediated by folate receptors (FR).
|
-
- HY-155881
-
mPEG-NH2 (MW 550)
|
Biochemical Assay Reagents
|
Cancer
|
mPEG-amine (MW 550) can synthesize folate-conjugated polymer micelles for encapsulation of anticancer agent 9-nitrocamptothecin (HY-16560). folate-conjugated polymer micelles are effective carriers of insoluble anticancer drugs, which can avoid macrophages and play a role in endocytosis of tumor cells mediated by folate receptors (FR).
|
-
- HY-155882
-
mPEG-NH2 (MW 750)
|
Biochemical Assay Reagents
|
Cancer
|
mPEG-amine (MW 750) can synthesize folate-conjugated polymer micelles for encapsulation of anticancer agent 9-nitrocamptothecin (HY-16560). folate-conjugated polymer micelles are effective carriers of insoluble anticancer drugs, which can avoid macrophages and play a role in endocytosis of tumor cells mediated by folate receptors (FR).
|
-
- HY-155883
-
mPEG-NH2 (MW 3400)
|
Biochemical Assay Reagents
|
Cancer
|
mPEG-amine (MW 3400) can synthesize folate-conjugated polymer micelles for encapsulation of anticancer agent 9-nitrocamptothecin (HY-16560). folate-conjugated polymer micelles are effective carriers of insoluble anticancer drugs, which can avoid macrophages and play a role in endocytosis of tumor cells mediated by folate receptors (FR).
|
-
- HY-155884
-
mPEG-NH2 (MW 4000)
|
Biochemical Assay Reagents
|
Cancer
|
mPEG-amine (MW 4000) can be used to synthesize folate-conjugated polymer micelles for encapsulating anticancer agent 9-nitrocamptothecin (HY-16560). folate-conjugated polymer micelles are effective carriers of insoluble anticancer drugs, which can avoid macrophages and play a role in endocytosis of tumor cells mediated by folate receptors (FR).
|
-
- HY-W115607
-
Poly(ethylene glycol)-bis-amine (MW 8000)
|
Biochemical Assay Reagents
|
Cancer
|
PEG-bis-amine (MW 8000) synthesizes folate-conjugated polymeric micelles for encapsulation of the anticancer agent 9-nitrocamptothecin HY-16560 (HY-16560). Folic acid-conjugated polymer micelles are effective carriers of insoluble anticancer drugs, which can avoid macrophages and play a role in endocytosis of tumor cells mediated by folate receptors (FR).
|
-
- HY-W591632
-
Poly(ethylene glycol)-bis-amine (MW 1000)
|
Biochemical Assay Reagents
|
Cancer
|
PEG-bis-amine (MW 1000) synthesizes folate-conjugated polymeric micelles for encapsulation of the anticancer agent 9-nitrocamptothecin HY-16560 (HY-16560). Folic acid-conjugated polymer micelles are effective carriers of insoluble anticancer drugs, which can avoid macrophages and play a role in endocytosis of tumor cells mediated by folate receptors (FR).
|
-
- HY-W888521
-
-
- HY-140696C
-
mPEG-Hydroxy (MW 20000); Polyethylene glycol monomethyl ether (MW 20000)
|
PROTAC Linkers
|
Cancer
|
m-PEG-OH (MW 20000) can be used as a macroinitiator to participate in the synthesis of amphiphilic block copolymers. Nanoscale micelles can be prepared by using amphiphilic block copolymers to deliver active drugs. Paclitaxel (HY-B0015), a hydrophobic anticancer agent encapsulated in micelles, has stronger activity in killing cancer cells than free Paclitaxel. And it preferentially accumulates in tumor tissue with only limited distribution in healthy organs.
|
-
- HY-140696D
-
mPEG-Hydroxy (MW 10000); Polyethylene glycol monomethyl ether (MW 10000)
|
PROTAC Linkers
|
Cancer
|
m-PEG-OH (MW 10000) can be used as a macroinitiator to participate in the synthesis of amphiphilic block copolymers. Amphiphilic block copolymers can be used to prepare nanoscale micelles to deliver active drugs. Paclitaxel (HY-B0015), a hydrophobic anticancer agent encapsulated in micelles, has stronger activity in killing cancer cells than free Paclitaxel. And it preferentially accumulates in tumor tissue with only limited distribution in healthy organs.
|
-
- HY-140696E
-
mPEG-Hydroxy (MW 1000); Polyethylene glycol monomethyl ether (MW 1000)
|
PROTAC Linkers
|
Cancer
|
m-PEG-OH (MW 1000) can be used as a macroinitiator to participate in the synthesis of amphiphilic block copolymers. Amphiphilic block copolymers can be used to prepare nanoscale micelles to deliver active drugs. Paclitaxel (HY-B0015), a hydrophobic anticancer agent encapsulated in micelles, has stronger cancer-killing activity than free Paclitaxel. And it accumulates preferentially in tumor tissues and has only limited distribution in healthy organs.
|
-
- HY-139818
-
|
Biochemical Assay Reagents
|
Others
|
Mal-PEG-PLA (PEG MW 3000 & PLA MW 70,000) is a block copolymer, which can be used to preparenanoparticles and micelles for targeted drug delivery .
|
-
- HY-B2106D
-
Decaethylene glycol monododecyl ether (C12E10); Polidocanol (10)
|
Biochemical Assay Reagents
|
Others
|
Polyoxyethylene (10) lauryl ether is a non-ionic surfactant. Polyoxyethylene (10) lauryl ether can be used to assess diffusion of proteins and nonionic micelles in agarose gels .
|
-
- HY-15934A
-
-
- HY-W142692
-
|
Biochemical Assay Reagents
|
Others
|
Dodecyl β-D-glucopyranoside is a non-ionic detergent and surfactant commonly used to solubilize and purify membrane proteins in biochemical research. Dodecyl β-D-glucopyranoside also interacts with bovine serum albumin (BSA) to quench its intrinsic fluorescence. The critical micelle concentration (CMC) of Dodecyl β-D-glucopyranoside (DG) and DG/BSA complex is 2.0 mM and 2.34 mM, respectively. Micelles can be formed in aqueous solutions above this concentration .
|
-
- HY-W099682
-
n-Hexyl trimethylammonium bromide
|
Biochemical Assay Reagents
|
Others
|
Hexyltrimethylammonium bromide is a cationic surfactant, quaternary ammonium compound, detergent, emulsifier, phase transfer catalyst, antibacterial agent, electrochemical device, corrosion inhibitor, micelle former, industrial chemical.
|
-
- HY-113424A
-
DOPC
|
Liposome
Endogenous Metabolite
|
Others
|
1,2-Dioleoyl-sn-glycero-3-phosphocholine (DOPC) is a phospholipid and is commonly used alone, or with other components, in the generation of micelles, liposomes, and other types of artificial membranes.
|
-
- HY-W127457
-
|
Liposome
|
Others
|
1,2-dihexanoyl-sn-glycero-3-phosphocholine is a phosphatidylcholine. It can play a role as a surfactant and is commonly used in the generation of micelles, liposomes, and other types of artificial membranes.
|
-
- HY-113437A
-
|
Endogenous Metabolite
|
Metabolic Disease
|
1,2-Dipalmitoyl-sn-glycerol 3-phosphate sodium (compound 3-F7) is a phosphatidic acid and a human endogenous metabolite . It is used in the generation of micelles, liposomes, and artificial membranes.
|
-
- HY-141892A
-
DSPE PEG(2000) Carboxylic Acid sodium
|
Liposome
|
Others
|
DSPE-PEG Carboxylic acid (sodium), MW 2000 is a PEG-lipid that can be used to form micelles as nanoparticles for drug delivery. DSPE-PEG Carboxylic acid (sodium), MW 2000 increases the blood circulation time of liposomes .
|
-
- HY-W800733
-
1,2-Dilauroyl-sn-glycero-3-phosphorylglycerol; PG(12:0/12:0)
|
Liposome
|
Cancer
|
DLPG is a phospholipid containing lauric acid (12 chain fatty acid) inserted at the sn-1 and sn-2 positions. Its phosphate group is attached to glycerol. It is used in the generation of micelles, liposomes, and other artificial membranes.
|
-
- HY-141571
-
|
Liposome
|
Others
|
DOPG sodium is a phospholipid containing oleic acid (18:1) inserted at the sn-1 and sn-2 positions. It can form a lipid bilayer in an aqueous solution and is used in the generation of micelles, liposomes, and other artificial membranes.
|
-
- HY-W440722
-
|
Biochemical Assay Reagents
Liposome
|
Others
|
Cholesterol-PEG-Thiol (MW 1000) is a PEGylated lipid that forms micelles in water and can be used to prepare liposomes or nanoparticles as drug delivery systems. The thiol moiety reacts with maleimide to form a stable thioether bond .
|
-
- HY-W440690
-
|
Liposome
|
Cancer
|
Cholesterol-PEG-Amine (MW 2000) is a pegylated lipids which can be used for preparation of liposome or nanoparticle. The lipophilic moiety can encapsulate hydrophobic drugs whereas the hydrophilic PEG chain helps the overal water solubility of the micelles.
|
-
- HY-W440724
-
|
Liposome
|
Cancer
|
Cholesterol-PEG-Thiol (MW 3400) is an amphiphatic PEG derivative which forms micelles in water and can be used to prepare liposomes or nanoparticles for drug delivery system. The thiol moiety is reactive with maleimide to form a stable thioether bond.
|
-
- HY-U00037
-
PLA 725
|
Phospholipase
|
Inflammation/Immunology
|
Ecopladib is a sub-micromolar inhibitor of cytosolic phospholipase A2α (cPLA2α), with IC50s of 0.15 μM and 0.11 μM in the GLU micelle and rat whole blood assays, respectively.
|
-
- HY-W012472
-
|
Others
|
Others
|
1,3,5-Triisopropylbenzene acts as a fuel and fuel additive. 1,3,5-Triisopropylbenzene is also used in lubricants and lubricant additives. 1,3,5-Triisopropylbenzene is used as a micelle expander .
|
-
- HY-W322575
-
DHPC
|
Liposome
|
Others
|
1,2-Diheptadecanoyl-sn-glycero-3-phosphorylcholine (DHPC) is a biologically active phospholipid compound and a derivative of phosphatidylcholine (PC) . It can be used in the generation of micelles, liposomes, and other types of artificial membranes.
|
-
- HY-W440927
-
|
Liposome
|
Others
|
Stearic acid-PEG-NHS, MW 2,000 is an amphiphatic PEG polymer which forms micelles in an aqueous solution for drug-loaded nanoparticles. The NHS ester is reactive with amine to form a stable amide bond. Reagent grade, for research purpose.
|
-
- HY-112554
-
|
Others
|
Others
|
PDM11 is a derivative of antioxidant resveratrol. PDM11 do not exhibit any significant protective effect against oxidation of linoleate micelles initiated by radiolysis-generated hydroxyl radicals. PDM11 is inactive in resveratrol activity assays .
|
-
- HY-W440934
-
|
Liposome
|
Others
|
Stearic acid-PEG-Rhodamine, MW 2000 is an amphiphilic PEG polymer which can form micelles in water. The rhodamine can be used for staining sample and easily traced by fluorescence microscopy. Rhodamine has maximum absorption at 570 nm and emission around 595 nm.
|
-
- HY-W590536
-
1-Palmitoyl-2-Lauroyl-sn-glycero-3-Phosphatidylcholine; 1-Palmitoyl-2-Lauroyl-sn-glycero-3-Phosphocholine
|
Liposome
|
Cancer
|
1,2-PLPC is a phospholipid containing palmitoyl (16:0) and lauryl (12:0) acyl substituents at the sn-1 and sn-2 positions, respectively. It can be used in the generation of micelles, liposomes, and other types of artificial membranes.
|
-
- HY-125744
-
|
Biochemical Assay Reagents
|
Others
|
Palmitoyl thio-PC is a chromogenic substrate specific for PLA2 with a palmitoyl thioester at the sn-2 position. Palmitoyl thio-PC could be used to measure bee-venom sPLA2 activity in a phospholipid:Triton X-100 mixed micelle system .
|
-
- HY-W040185
-
1,2-DPPA sodium; PA(14:0/14:0) sodium; 1,2-Dimyristoyl-sn-glycero-3-phosphate sodium
|
Liposome
|
Metabolic Disease
|
1,2-Dimyristoyl-sn-glycero-3-phosphate monosodium is a phospholipid containing the long-chain (14:0) myristic acid inserted at the sn-1 and sn-2 positions. It can be used in the generation of micelles, liposomes, and other types of artificial membranes.
|
-
- HY-157721
-
DBPC
|
Liposome
|
Others
|
1,2-Dibehenoyl-sn-glycero-3-phosphocholine (DBPC) is a phospholipid found in cell membranes. 1, 2-dibehenoyl-SN-glycero-3-phosphocholine can be used to generate micelles, liposomes, and other types of artificial membranes .
|
-
- HY-W440909
-
|
Liposome
|
Others
|
DSPE-PEG-Cy3, MW 3400 is a phospholipid PEG polymer with Cy3 dye used in labeling and fluorescence microscopy. The polymer can self-assemble in aqueous solution to form micelles/lipid bilayer and used to prepare liposomes or nanoparticles for nutrients delivery such as mRNA or DNA vaccine.
|
-
- HY-W440910
-
|
Liposome
|
Others
|
DSPE-PEG-Cy3, MW 5000 is a phospholipid PEG polymer with Cy3 dye used in labeling and fluorescence microscopy. The polymer can self-assemble in aqueous solution to form micelles/lipid bilayer and used to prepare liposomes or nanoparticles for nutrients delivery such as mRNA or DNA vaccine.
|
-
- HY-W440706
-
|
Liposome
|
Cancer
|
Cholesterol-PEG-alcohol (MW 2000) is a pegylated lipids which can be used for preparation of liposome or nanoparticle. The lipophilic moiety can encapsulate hydrophobic drugs whereas the hydrophilic PEG chain helps the overal water solubility of the micelles. The amine can react with an activated NHS ester to form a stable amide bond.
|
-
- HY-144009
-
|
Liposome
|
Cancer
|
DSPE-PEG-Folate, MW 3350 is a PEG derivative containing folic acid. DSPE-PEG-Folate has a targeting effect and bind to folate receptors in cancer cells. DSPE-PEG-Folate form micelles/lipid bilayer and can be used to targeted drug delivery system research .
|
-
- HY-W440913
-
|
Liposome
|
Others
|
DSPE-PEG-Cy5, MW 5000 is a PEG phospholipid with Cy5 dye used in protein/nucelic acid labeling and fluorescence microscopy. The polymer can self-assemble in aqueous solution to form micelles/lipid bilayer and used to prepare liposomes or nanoparticles for nutrients delivery such as mRNA or DNA vaccine.
|
-
- HY-W440912
-
|
Liposome
|
Others
|
DSPE-PEG-Cy5, MW 3400 is a PEG phospholipid with Cy5 dye used in protein/nucelic acid labeling and fluorescence microscopy. The polymer can self-assemble in aqueous solution to form micelles/lipid bilayer and used to prepare liposomes or nanoparticles for nutrients delivery such as mRNA or DNA vaccine.
|
-
- HY-113925
-
1,2-DLPA Sodium; (2R)-2,3-bis(dodecanoyloxy)propyl hydrogen phosphate sodium
|
Liposome
|
Metabolic Disease
|
1,2-Dilauroyl-sn-glycero-3-phosphate (1,2-DLPA) sodium is a phospholipid containing the medium-chain (12:0) lauric acid inserted at the sn-1 and sn-2 positions. It can be used in the generation of micelles, liposomes, and other types of artificial membranes.
|
-
- HY-W440834
-
|
Biochemical Assay Reagents
Liposome
|
Others
|
DSPE-PEG-Azide, MW 5000 is a click chemistry reactive phospholipid polyPEG which forms lipid bilayer or micelles in an aqueous solution. The polymer can be used to prepare liposomes or nanoparticles used for delivering nutrients or therapeutic agents, for example mRNA or DNA vaccine. Reagent grade, for research use only.
|
-
- HY-B2106DR
-
|
Biochemical Assay Reagents
|
Others
|
Polyoxyethylene (10) lauryl ether (Standard) is the analytical standard of Polyoxyethylene (10) lauryl ether. This product is intended for research and analytical applications. Polyoxyethylene (10) lauryl ether is a non-ionic surfactant. Polyoxyethylene (10) lauryl ether can be used to assess diffusion of proteins and nonionic micelles in agarose gels .
|
-
- HY-W339838
-
14:0 Lyso PG
|
Liposome
|
Cancer
|
1-Myristoyl-2-hydroxy-sn-glycero-3-PG sodium is a lysophospholipid containing myristic acid (14:0) at the sn-1 position. It has been used in the generation of micelles, liposomes, and other types of artificial membranes, including lipid-based drug carrier systems.
|
-
- HY-125940S
-
|
Isotope-Labeled Compounds
|
Others
|
DPPG-d62 (sodium) is deuterium labeled DPPG. DPPG sodium (1,2-Dipalmitoyl-sn-glycero-3-PG sodium) is a phospholipid containing the long-chain(16:0) palmitic acid inserted at the sn-1 and sn-2 positions. DPPG sodium is used in the generation of micelles, l
|
-
- HY-117401
-
|
Fluorescent Dye
|
Others
|
5-Dodecanoylaminofluorescein, a lipophilic fluorescent probe, is a free-fatty-acid conjugate of fluorescein. 5-Dodecanoylaminofluorescein has been used in membrane fluidity studies and the determination of critical micelle concentration of detergents. 5-Dodecanoylaminofluorescein can be also used to synthesize hydrophobic nanospheres for drug delivery .
|
-
- HY-W440888
-
DSPE-PEG(2000) Folate
|
Liposome
|
Others
|
DSPE-PEG-Folate, MW 2000 is a PEG derivative containing folic acid. DSPE-PEG-Folate, MW 2000 has a targeting effect and bind to folate receptors in cancer cells. DSPE-PEG-Folate, MW 2000 form micelles/lipid bilayer and can be used to targeted drug delivery system research.
|
-
- HY-W343736
-
1,3-DPPE; 1,3-Dipalmitoyl-sn-glycero-2-PE
|
Liposome
|
Cancer
|
1,3-Dipalmitoyl-glycero-2-phosphoethanolamine is a phospholipid containing the saturated long-chain (16:0) stearic acid inserted at the sn-1 and sn-3 positions and PE at the sn-2 site. It can be used in the generation of micelles, liposomes, and other types of artificial membranes.
|
-
- HY-158373
-
|
Autophagy
|
Cancer
|
Anticancer agent 213 (Compound 1) exhibits anticancer efficacy by self-assembling into micelles, depleting membran cholesterol and thus inhibiting cancer cells. Anticancer agent 213 exhibits cytotoxicity against HeLa and PC3, with IC50 of 10.3 and 13.7 μM. Anticancer agent 213 induces autophagy .
|
-
- HY-141614
-
Phosphatidylcholine Diarachidoyl; 1,2-DAPC; L-α-Diarachidonoyl lecithin
|
Liposome
|
Metabolic Disease
|
1,2-Diarachidoyl-sn-glycero-3-phosphocholine (1,2-DAPC) is a phospholipid containing the saturated long-chain (20:0) arachidic acid inserted at the sn-1 and sn-2 positions. It can be used in the generation of micelles, liposomes, and other types of artificial membranes.
|
-
- HY-W800734
-
MPPC; PC(14:0/16:0)
|
Liposome
|
Cancer
|
1-Myristoyl-2-palmitoyl-sn-glycero-3-phosphocholine (MPPC) is an asymmetrical phosphatidylcholine containing a myristic acid (14:0) at the sn-1 position and a palmitic acid (16:0) at the sn-2 position. It is commonly used in the generation of micelles, liposomes, and other types of artificial membranes.
|
-
- HY-W440694
-
|
Liposome
|
Cancer
|
Cholesterol-PEG-Azide (MW 2000) is a pegylated lipids which can be used for preparation of liposome or nanoparticle. The lipophilic moiety can encapsulate hydrophobic drugs whereas the hydrophilic PEG chain helps the overal water solubility of the micelles. Cholesterol-PEG-Azide (MW 2000) can be reacted with alkyne via CuAAC or SPAAC click chemistry.
|
-
- HY-134174
-
|
Liposome
|
Cancer
|
1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphate is a phospholipid containing saturated palmitic acid (16:0) and monounsaturated oleic acid (18:1) inserted at the sn-1 and sn-2 positions, respectively. It can be used in the generation of micelles, liposomes, and other types of artificial membranes.
|
-
- HY-W440890
-
|
Liposome
|
Cancer
|
DSPE-PEG-Folate, MW 5000 is a PEG derivative containing folic acid. DSPE-PEG-Folate, MW 5000 has a targeting effect and bind to folate receptors in cancer cells. DSPE-PEG-Folate, MW 5000 form micelles/lipid bilayer and can be used to targeted drug delivery system research .
|
-
- HY-W440835
-
DSPE-PEG(2000)-DBCO
|
Liposome
|
Others
|
DSPE-PEG-DBCO, MW 2000 is a phospholipid-PEG polymer that can be used to form micelles as lipid nanoparticles for drug delivery . DSPE-PEG-DBCO, MW 2000 is a click chemistry reagent, it contains a DBCO group that can undergo strain-promoted alkyne-azide cycloaddition (SPAAC) with molecules containing Azide groups.
|
-
- HY-W440936
-
|
Liposome
|
Others
|
Stearic acid-PEG-Rhodamine, MW 5000 is a fatty acid containing PEG polymer which can self assemble in an aqueous solution to form micelles. The polymer can be used to prepare nanoparticles for drug encapsulation. The red dye rhodamine can be easily traced by fluorescence microscopy. Rhodamine has maximum absorption at 570 nm and emission around 595 nm.
|
-
- HY-W440935
-
|
Liposome
|
Others
|
Stearic acid-PEG-Rhodamine, MW 3400 is a fatty acid containing PEG polymer which can self assemble in an aqueous solution to form micelles. The polymer can be used to prepare nanoparticles for drug encapsulation. The red dye rhodamine can be easily traced by fluorescence microscopy. Rhodamine has maximum absorption at 570 nm and emission around 595 nm.
|
-
- HY-W440991
-
|
Liposome
|
Cancer
|
DOPE-PEG-Amine (MW 2000) is a polydisperse PEG covalently attached to a phospholipid. The polymer is an amphiphilic molecule with hydrophobic fatty acid chains and hydrophilic PEG head which enables lipid bilayer or micelle formation in water. The phospholipid PEG can be used to prepare liposome or nanoparticles for targeted drug delivery and is reactive with alkyne to form a triazole ring.
|
-
- HY-145505
-
18:1 Lyso-PG; 1-Oleoyl-2-hydroxy-sn-glycero-3-phospho-(1'-rac-glycerol); 1-Oleoyl-2-hydroxy-sn-glycero-3-phosphoglycerol
|
Endogenous Metabolite
Liposome
|
Metabolic Disease
|
1-Oleoyl-2-hydroxy-sn-glycero-3-PG (18:1 Lyso PE) sodium is a lysophospholipid containing oleic acid (18:1) at the sn-1 position. It can be used in the generation of micelles, liposomes, and other types of artificial membranes, including lipid-based drug carrier systems.
|
-
- HY-W440938
-
|
Liposome
|
Others
|
Stearic acid-PEG-FITC, MW 2000 is an amphiphatic polyPEG which can self assemble to form micelles in water. The polymer can be used to encapsulate therapeutic agent. FITC is a green dye with peak absorption at 494 nm and maximum emission at 520 nm and can be used for staining biological samples or nanoparticles. FITC can be easily traced by fluorescence microscopy.
|
-
- HY-W440953
-
|
Biochemical Assay Reagents
|
Others
|
Stearic acid-PEG-CH2CO2H, MW 1000 is an amphiphatic PEG polymer which forms micelles in an aqueous solution for drug-loaded nanoparticles. The terminal carboxyl can react with amine via condensation reaction in the presence of HATU/EDC activator. Reagent grade, for research use only.
|
-
- HY-113424AS
-
DOPC-d9
|
Isotope-Labeled Compounds
Endogenous Metabolite
|
Others
|
1,2-Dioleoyl-sn-glycero-3-phosphocholine-d9 is deuterium labeled 1,2-Dioleoyl-sn-glycero-3-phosphocholine. 1,2-Dioleoyl-sn-glycero-3-phosphocholine (DOPC) is a phospholipid and is commonly used alone, or with other components, in the generation of micelle
|
-
- HY-W440940
-
|
Liposome
|
Others
|
Stearic acid-PEG-FITC, MW 5000 is a PEG lipid which forms micelles in water and can be used for drug delivery applications. The FITC fluorescent can be easily traced by miscroscopy. FITC is a green dye with peak absorption at 494 nm and maximum emission at 520 nm and can be used for staining biological samples or nanoparticles. FITC can be easily traced by fluorescence microscopy.
|
-
- HY-W440939
-
|
Liposome
|
Others
|
Stearic acid-PEG-FITC, MW 3400 is a PEG lipid which forms micelles in water and can be used for drug delivery applications. The FITC fluorescent can be easily traced by miscroscopy. FITC is a green dye with peak absorption at 494 nm and maximum emission at 520 nm and can be used for staining biological samples or nanoparticles. FITC can be easily traced by fluorescence microscopy.
|
-
- HY-W440945
-
|
Liposome
|
Others
|
Stearic acid-PEG-amine, MW 2000 is an amphiphilic PEG polymer which forms micelles in an aqueous solution. The terminal amine can react with an NHS ester to form a stable amide linkage. The aliphatic chain of stearic acid can be used to encapsulate or congregate hydrophobic therapeutic agents while the PEG chain enhances overall solubility of the polymer. Reagent grade, for research use only.
|
-
- HY-W591332
-
|
Liposome
|
Cancer
|
DMPE-mPEG, MW 2000 is a PEGylated 1,2-Dimyristoyl-sn-glycero-3-phosphoethanolamine (14:0 PE) compound with a methyl group at the other end of the PEG chain. The PEG polymer exhibits amphiphatic behavior and helps to form stable micelles in an aqueous solution. It can be used to prepare nanoparticles or liposomes for targeted drug delivery applications.
|
-
- HY-W440956
-
|
Biochemical Assay Reagents
|
Others
|
Stearic acid-PEG-CH2CO2H, MW 5000 is an amphiphilic PEG polymer which forms micelles in an aqueous solution. The aliphatic chain of stearic acid can be used to encapsulate or congregate hydrophobic therapeutic agents while the PEG chain enhances overall solubility of the polymer. Reagent grade, for research use only.
|
-
- HY-145506
-
18:0 Lyso PG sodium
|
Liposome
|
Metabolic Disease
|
1-Stearoyl-2-hydroxy-sn-glycero-3-phospho-(1'-rac-glycerol) (18:0 Lyso PE) sodium is a lysophospholipid containing stearic acid (18:0) at the sn-1 position. It can be used in the generation of micelles, liposomes, and other types of artificial membranes, including lipid-based drug carrier systems.
|
-
- HY-145507
-
1-Palmitoyl-2-hydroxy-sn-glycero-3-PG sodium; 16:0 Lyso PG; PG(16:0/0:0); 1-Hexadecanoyl-sn-glycero-3-phospho-(1'racglycerol) (sodium)
|
Liposome
|
Metabolic Disease
|
1-Palmitoyl-2-hydroxy-sn-glycero-3-phospho-(1'-rac-glycerol) (16:0 Lyso PE) sodium is a lysophospholipid containing palmitic acid (16:0) at the sn-1 position. It can be used in the generation of micelles, liposomes, and other types of artificial membranes, including lipid-based drug carrier systems.
|
-
- HY-W440833
-
|
Biochemical Assay Reagents
Liposome
|
Others
|
DSPE-PEG-Azide, MW 3400 is a polydisperse PEG covalently attached to a phospholipid. The polymer is an amphiphilic molecule with hydrophobic fatty acid chains and hydrophilic PEG head which enables lipid bilayer or micelles formation in water. The phospholipid PEG can be used to prepare liposome or nanoparticles for targeted drug delivery and is reactive with alkyne to form triazole bond. Reagent grade, for research use only.
|
-
- HY-P10318
-
|
GLP Receptor
|
Endocrinology
|
SHR-2042 is a selective agonist of the GLP-1 receptor.SHR-2042 improves glycemic control by activating the GLP-1 receptor, enhancing insulin secretion and inhibiting glucagon secretion. SHR-2042 combined with sodium N-(8-[2-hydroxybenzoyl] amino) caprylate (SNAC) promotes monomerization through the formation of micelles and improves oral absorption efficiency .
|
-
- HY-125940
-
|
Liposome
|
Others
|
Sodium DPPG (1,2-Dipalmitoyl-sn-glycero-3-PG sodium) is a phospholipid that contains long-chain (16:0) palmitic acid inserted at the sn-1 and sn-2 positions, and it’s also the active component that prevents BaP molecules from entering the water subphase. DPPG sodium is used in the generation of micelles, liposomes and other types of artificial membranes .
|
-
- HY-160269
-
|
Fluorescent Dye
|
Others
|
DSPE-PEG-Fluor 488,MW 2000 is a PEG-dye-lipid conjugate consisting of a DSPE phospholipid and a Fluor 488 dye. DSPE is a phospholipid that spontaneously forms micelles in a water medium, and Fluor 488 is a cyanine dye that is widely used in fluorescence microscopy. Fluor 488 has excitation and emission maxima at 499 nm and 520 nm. Polyethylene glycol lipids are commonly used for the stabilization of lipid nanoparticles .
|
-
- HY-W440902
-
|
Biochemical Assay Reagents
|
Others
|
DSPE-PEG-IA, MW 3400 is an iodoacetyll PEG lipid. The polymer can form lipid bilayer or micelles spontaneoulsy in water. The lipophilic tails can be used to encapsulate hydrophobic therapeutic agents while the hydrophilic head can be used to encapuslate hydrophilic drugs/nutrient, such as antibody, mRNA/DNA. The iodoacetyl group is reactive with thiol to produce a thioether linkage. Reagent grade, for research use only.
|
-
- HY-W440954
-
|
Liposome
|
Others
|
Stearic acid-PEG-CH2CO2H, MW 2000 is a heterobifunctional polyPEG with 18-carbon aliphatic chain and carboxyl. The polymer has stearic acid as the hydrophobic tail and PEG as the hydrophilic chain, therefore it forms micelles in water. Carboxyl can react with amine in the presence of activator, such as HATU/EDC to generate a stable amide bond. Reagent grade, for research use only.
|
-
- HY-161750
-
|
PROTACs
Anaplastic lymphoma kinase (ALK)
|
Cancer
|
PROTAC ALK degrader-2 (B1-PEG) is an ALK degrader based on PROTACs, with the DC50 of 45 nM in H3122 EML4-ALK DC50 (GSH+). PROTAC ALK degrader-2, through PEGylation, is engineered to self-organize into micelles in water and releases its active form in response to the tumor-specific high GSH environment .
|
-
- HY-W440903
-
|
Biochemical Assay Reagents
|
Others
|
DSPE-PEG-DBCO, MW 2000 is a cyclooctyne containing phospholipid PEG polymer. The polymer can self-assemble spontaneously in water to form micelles/lipid bilayer. It can be used to prepare nanoparticles or liposomes as drug carrier in targeted drug delivery system. The DBCO can react with azide molecule via copper free click chemistry to form a stable triazole bond. Reagent grade, for research use only.
|
-
- HY-W414390
-
2-Cyclohexylethyl-4-O-(alpha-D-glucopyranosyl)-beta-D-glucopyranoside, 98%
|
Biochemical Assay Reagents
|
Others
|
2-Cyclohexylethyl-4-O-(α-D-glucopyranosyl)-β-D-glucopyranoside, 98% (2-Cyclohexylethyl-4-O-(alpha-D-glucopyranosyl)-beta-D-glucopyranoside, 98%) is a detergent that can be used for the purification and crystallization of membrane-bound proteins in their native structure. It can self-assemble into micelles and vesicles in aqueous solution and can be used for the study of biomembrane models.
|
-
- HY-W440926
-
|
Biochemical Assay Reagents
Liposome
|
Others
|
DSPE-PEG-DBCO, MW 2000 is a cyclooctyne containing phospholipid PEG polymer. The polymer can self-assemble spontaneously in water to form micelles/lipid bilayer. It can be used to prepare nanoparticles or liposomes as drug carrier in targeted drug delivery system. The DBCO can react with azide molecule via copper free click chemistry to form a stable triazole bond. Reagent grade, for research use only.
|
-
- HY-W440832
-
DSPE-PEG(2000) Azide
|
Liposome
|
Infection
|
DSPE-PEG-Azide (MW 2000) is an azide containing lipid that can be used to form micelles as nanoparticles for drug delivery . DSPE-PEG-Azide (MW 2000) is a click chemistry reagent, it contains an Azide group and can undergo copper-catalyzed azide-alkyne cycloaddition reaction (CuAAc) with molecules containing Alkyne groups. It can also undergo strain-promoted alkyne-azide cycloaddition (SPAAC) reactions with molecules containing DBCO or BCN groups.
|
-
- HY-W440885
-
|
Biochemical Assay Reagents
|
Others
|
DSPE-PEG-Ald, MW 5000 is a phospholipid PEG polymer which can self-assemble spontaneously in water with their hydrophilic heads oriented toward the water (micelles). The polymer can be used to prepare liposome as a drug nanocarrier for administration of nutrients and therapeutic drugs, such as lipid nanoparticles in mRNA or DNA vaccines. The aldehyde is reactive with aminooxy to form a stable oxime linkage or with amine at pH < 7 to form a reversible imine bond. Reagent grade, for research use only.
|
-
- HY-123622
-
|
Biochemical Assay Reagents
|
Others
|
CYMAL-5, 98% (TLC) is a cycloalkyl aliphatic saccharide. CYMAL-5, 98% (TLC) is a glycosidic surfactant (GS) with a chiral maltose polar head group and a cyclohexyl-pentyl hydrophobic tail. CYMAL-5, 98% (TLC) is a non-ionic detergent that has a tenfold lower critical micelle concentration (CMC) in comparison with OG, and has previously been used for membrane protein extraction or crystallization of membrane proteins for X-ray crystallographic studies .
|
-
- HY-W099547
-
|
Liposome
|
Others
|
Dihexadecyl hydrogen phosphateIt is an organic compound belonging to phospholipids. It's often used as an emulsifier, which means it helps mix two substances together that don't usually mix well, such as oil and water. Dihexadecyl hydrogen phosphateIt has several applications in the food industry, especially in the production of processed foods where it improves texture and stability. Additionally, it has applications in the pharmaceutical industry where it can be used ain the generation of micelles, liposomes, and other types of artificial membranes.
|
-
- HY-123645
-
|
Fluorescent Dye
|
Others
|
Rhodamine B hydrazide is a good probe for sulfite, with colorless and non-fluorescent properties. While the emission is related to the concentration of sulfite (5-800 ng/mL; detection limit=1.4 ng/mL (3σ)). Sulfite reduces dissolved oxygen to yield superoxide radicals, which binds to Rhodamine B hydrazide to form Rhodamine B. Rhodamine B hydrazide gives Rhodamine B-like fluorescence in the presence of sulfite, which is enhanced by Tween 80 surfactant micelles. Rhodamine B hydrazide has an absorption maximum at 554 nm and a fluorescence emission maximum at 574 nm .
|
-
Cat. No. |
Product Name |
Type |
-
- HY-117401
-
|
Fluorescent Dyes/Probes
|
5-Dodecanoylaminofluorescein, a lipophilic fluorescent probe, is a free-fatty-acid conjugate of fluorescein. 5-Dodecanoylaminofluorescein has been used in membrane fluidity studies and the determination of critical micelle concentration of detergents. 5-Dodecanoylaminofluorescein can be also used to synthesize hydrophobic nanospheres for drug delivery .
|
-
- HY-123645
-
|
Fluorescent Dyes/Probes
|
Rhodamine B hydrazide is a good probe for sulfite, with colorless and non-fluorescent properties. While the emission is related to the concentration of sulfite (5-800 ng/mL; detection limit=1.4 ng/mL (3σ)). Sulfite reduces dissolved oxygen to yield superoxide radicals, which binds to Rhodamine B hydrazide to form Rhodamine B. Rhodamine B hydrazide gives Rhodamine B-like fluorescence in the presence of sulfite, which is enhanced by Tween 80 surfactant micelles. Rhodamine B hydrazide has an absorption maximum at 554 nm and a fluorescence emission maximum at 574 nm .
|
Cat. No. |
Product Name |
Type |
-
- HY-111915
-
18:1 PA
|
Drug Delivery
|
1,2-Dioleoyl-sn-glycero-3-phosphate sodium salt (18:1 PA) is an anionic lipid that can be used to prepare liposomes, micelles and artificial membranes .
|
-
- HY-W155121
-
N,N-Bis(3-D-gluconamidopropyl)cholamide
|
Surfactants
|
Big CHAP are aqueous micelles of anionic cholate analogues .
|
-
- HY-W441013
-
|
Drug Delivery
|
DSPE-PEG-NHS, MW 1000 is an amine reactive phospholipid. The reaction between NHS esters and amines forms a stable amide bond. The polymer is amphiphilic and capable of forming micelles or lipid bilayer in aqueous solution.
|
-
- HY-167388
-
|
Drug Delivery
|
PLLA5000-PEG5000-ALK is a polylactic acid derivative that can form micelles in water. PLLA5000-PEG5000-ALK can be used in drug delivery research .
|
-
- HY-167389
-
|
Drug Delivery
|
PLLA5000-PEG3000-ALK is a polylactic acid derivative that can form micelles in water. PLLA5000-PEG3000-ALK can be used in drug delivery research .
|
-
- HY-167390
-
|
Drug Delivery
|
PLLA5000-PEG2000-ALK is a polylactic acid derivative that can form micelles in water. PLLA5000-PEG2000-ALK can be used in drug delivery research .
|
-
- HY-167391
-
|
Drug Delivery
|
PLLA5000-PEG1000-ALK is a polylactic acid derivative that can form micelles in water. PLLA5000-PEG1000-ALK can be used in drug delivery research .
|
-
- HY-167392
-
|
Drug Delivery
|
PLLA4000-PEG5000-ALK is a polylactic acid derivative that can form micelles in water. PLLA4000-PEG5000-ALK can be used in drug delivery research .
|
-
- HY-167393
-
|
Drug Delivery
|
PLLA4000-PEG3000-ALK is a polylactic acid derivative that can form micelles in water. PLLA4000-PEG3000-ALK can be used in drug delivery research .
|
-
- HY-167394
-
|
Drug Delivery
|
PLLA4000-PEG2000-ALK is a polylactic acid derivative that can form micelles in water. PLLA4000-PEG2000-ALK can be used in drug delivery research .
|
-
- HY-167395
-
|
Drug Delivery
|
PLLA4000-PEG1000-ALK is a polylactic acid derivative that can form micelles in water. PLLA4000-PEG1000-ALK can be used in drug delivery research .
|
-
- HY-167396
-
|
Drug Delivery
|
PLLA3000-PEG5000-ALK is a polylactic acid derivative that can form micelles in water. PLLA3000-PEG5000-ALK can be used in drug delivery research .
|
-
- HY-167397
-
|
Drug Delivery
|
PLLA3000-PEG3000-ALK is a polylactic acid derivative that can form micelles in water. PLLA3000-PEG3000-ALK can be used in drug delivery research .
|
-
- HY-167398
-
|
Drug Delivery
|
PLLA3000-PEG2000-ALK is a polylactic acid derivative that can form micelles in water. PLLA3000-PEG2000-ALK can be used in drug delivery research .
|
-
- HY-167399
-
|
Drug Delivery
|
PLLA3000-PEG1000-ALK is a polylactic acid derivative that can form micelles in water. PLLA3000-PEG1000-ALK can be used in drug delivery research .
|
-
- HY-167400
-
|
Drug Delivery
|
PLLA2000-PEG5000-ALK is a polylactic acid derivative that can form micelles in water. PLLA2000-PEG5000-ALK can be used in drug delivery research .
|
-
- HY-167401
-
|
Drug Delivery
|
PLLA2000-PEG3000-ALK is a polylactic acid derivative that can form micelles in water. PLLA2000-PEG3000-ALK can be used in drug delivery research .
|
-
- HY-167402
-
|
Drug Delivery
|
PLLA2000-PEG2000-ALK is a polylactic acid derivative that can form micelles in water. PLLA2000-PEG2000-ALK can be used in drug delivery research .
|
-
- HY-167403
-
|
Drug Delivery
|
PLLA2000-PEG1000-ALK is a polylactic acid derivative that can form micelles in water. PLLA2000-PEG1000-ALK can be used in drug delivery research .
|
-
- HY-167404
-
|
Drug Delivery
|
PLLA1000-PEG5000-ALK is a polylactic acid derivative that can form micelles in water. PLLA1000-PEG5000-ALK can be used in drug delivery research .
|
-
- HY-167405
-
|
Drug Delivery
|
PLLA1000-PEG3000-ALK is a polylactic acid derivative that can form micelles in water. PLLA1000-PEG3000-ALK can be used in drug delivery research .
|
-
- HY-167406
-
|
Drug Delivery
|
PLLA1000-PEG2000-ALK is a polylactic acid derivative that can form micelles in water. PLLA1000-PEG2000-ALK can be used in drug delivery research .
|
-
- HY-167407
-
|
Drug Delivery
|
PLLA1000-PEG1000-ALK is a polylactic acid derivative that can form micelles in water. PLLA1000-PEG1000-ALK can be used in drug delivery research .
|
-
- HY-167408
-
|
Drug Delivery
|
PLLA10000-PEG5000-ALK is a polylactic acid derivative that can form micelles in water. PLLA10000-PEG5000-ALK can be used in drug delivery research .
|
-
- HY-167409
-
|
Drug Delivery
|
PLLA10000-PEG3000-ALK is a polylactic acid derivative that can form micelles in water. PLLA10000-PEG3000-ALK can be used in drug delivery research .
|
-
- HY-167410
-
|
Drug Delivery
|
PLLA10000-PEG2000-ALK is a polylactic acid derivative that can form micelles in water. PLLA10000-PEG2000-ALK can be used in drug delivery research .
|
-
- HY-W440699
-
|
Drug Delivery
|
Cholesterol-PEG-acid (MW 3400) is a cholesterol PEG derivative that can form micelles through molecular self-assembly and has a longer half-life in vivo. Cholesterol-PEG-acid (MW 3400) can be used in drug delivery research .
|
-
- HY-W440700
-
|
Drug Delivery
|
Cholesterol-PEG-acid (MW 5000) is a cholesterol PEG derivative that can form micelles through molecular self-assembly and has a longer half-life in vivo. Cholesterol-PEG-acid (MW 5000) can be used in drug delivery research .
|
-
- HY-W591891
-
|
Drug Delivery
|
Cholesterol-PEG-acid (MW 1000) is a cholesterol PEG derivative that can form micelles through molecular self-assembly and has a longer half-life in vivo. Cholesterol-PEG-acid (MW 1000) can be used in drug delivery research .
|
-
- HY-W440704
-
|
Carbohydrates
|
Cholesterol-PEG-NHS (MW 5000) is a cholesterol PEG derivative that can form micelles through molecular self-assembly and has a longer half-life in vivo. Cholesterol-PEG-NHS (MW 5000) can be used in drug delivery research .
|
-
- HY-W440689
-
|
Drug Delivery
|
Cholesterol-PEG-amine (MW 1000) is a cholesterol PEG derivative that can form micelles through molecular self-assembly and has a longer half-life in vivo. Cholesterol-PEG-amine (MW 1000) can be used in drug delivery research .
|
-
- HY-W440691
-
|
Drug Delivery
|
Cholesterol-PEG-amine (MW 3400) is a cholesterol PEG derivative that can form micelles through molecular self-assembly and has a longer half-life in vivo. Cholesterol-PEG-amine (MW 3400) can be used in drug delivery research .
|
-
- HY-W440692
-
|
Drug Delivery
|
Cholesterol-PEG-amine (MW 5000) is a cholesterol PEG derivative that can form micelles through molecular self-assembly and has a longer half-life in vivo. Cholesterol-PEG-amine (MW 5000) can be used in drug delivery research .
|
-
- HY-W440693
-
|
Drug Delivery
|
Cholesterol-PEG-azide (MW 1000) is a cholesterol PEG derivative that can form micelles through molecular self-assembly and has a longer half-life in vivo. Cholesterol-PEG-azide (MW 1000) can be used in drug delivery research .
|
-
- HY-W440695
-
|
Drug Delivery
|
Cholesterol-PEG-azide (MW 3400) is a cholesterol PEG derivative that can form micelles through molecular self-assembly and has a longer half-life in vivo. Cholesterol-PEG-azide (MW 3400) can be used in drug delivery research .
|
-
- HY-W440696
-
|
Drug Delivery
|
Cholesterol-PEG-azide (MW 5000) is a cholesterol PEG derivative that can form micelles through molecular self-assembly and has a longer half-life in vivo. Cholesterol-PEG-azide (MW 5000) can be used in drug delivery research .
|
-
- HY-W440697
-
|
Drug Delivery
|
Cholesterol-PEG-NHS (MW 1000) is a cholesterol PEG derivative that can form micelles through molecular self-assembly and has a longer half-life in vivo. Cholesterol-PEG-NHS (MW 1000) can be used in drug delivery research .
|
-
- HY-W440702
-
|
Drug Delivery
|
Cholesterol-PEG-NHS (MW 2000) is a cholesterol PEG derivative that can form micelles through molecular self-assembly and has a longer half-life in vivo. Cholesterol-PEG-NHS (MW 2000) can be used in drug delivery research .
|
-
- HY-W440703
-
|
Drug Delivery
|
Cholesterol-PEG-NHS (MW 3400) is a cholesterol PEG derivative that can form micelles through molecular self-assembly and has a longer half-life in vivo. Cholesterol-PEG-NHS (MW 3400) can be used in drug delivery research .
|
-
- HY-W440705
-
|
Drug Delivery
|
Cholesterol-PEG-alcohol (MW 1000) is a cholesterol PEG derivative that can form micelles through molecular self-assembly and has a longer half-life in vivo. Cholesterol-PEG-alcohol (MW 1000) can be used in drug delivery research .
|
-
- HY-W440707
-
|
Drug Delivery
|
Cholesterol-PEG-alcohol (MW 3400) is a cholesterol PEG derivative that can form micelles through molecular self-assembly and has a longer half-life in vivo. Cholesterol-PEG-alcohol (MW 3400) can be used in drug delivery research .
|
-
- HY-W440708
-
|
Drug Delivery
|
Cholesterol-PEG-alcohol (MW 5000) is a cholesterol PEG derivative that can form micelles through molecular self-assembly and has a longer half-life in vivo. Cholesterol-PEG-alcohol (MW 5000) can be used in drug delivery research .
|
-
- HY-W440709
-
|
Drug Delivery
|
Cholesterol-PEG-alcohol (MW 10000) is a cholesterol PEG derivative that can form micelles through molecular self-assembly and has a longer half-life in vivo. Cholesterol-PEG-alcohol (MW 10000) can be used in drug delivery research .
|
-
- HY-W440710
-
|
Drug Delivery
|
Cholesterol-PEG-Biotin (MW 1000) is a cholesterol PEG derivative that can form micelles through molecular self-assembly and has a longer half-life in vivo. Cholesterol-PEG-Biotin (MW 1000) can be used in drug delivery research .
|
-
- HY-W440712
-
|
Drug Delivery
|
Cholesterol-PEG-Biotin (MW 3400) is a cholesterol PEG derivative that can form micelles through molecular self-assembly and has a longer half-life in vivo. Cholesterol-PEG-Biotin (MW 3400) can be used in drug delivery research .
|
-
- HY-W440713
-
|
Drug Delivery
|
Cholesterol-PEG-Biotin (MW 5000) is a cholesterol PEG derivative that can form micelles through molecular self-assembly and has a longer half-life in vivo. Cholesterol-PEG-Biotin (MW 5000) can be used in drug delivery research .
|
-
- HY-W440714
-
|
Drug Delivery
|
Cholesterol-PEG-Folate (MW 1000) is a cholesterol PEG derivative that can form micelles through molecular self-assembly and has a longer half-life in vivo. Cholesterol-PEG-Folate (MW 1000) can be used in drug delivery research .
|
-
- HY-W440716
-
|
Drug Delivery
|
Cholesterol-PEG-Folate (MW 3400) is a cholesterol PEG derivative that can form micelles through molecular self-assembly and has a longer half-life in vivo. Cholesterol-PEG-Folate (MW 3400) can be used in drug delivery research .
|
-
- HY-W440717
-
|
Drug Delivery
|
Cholesterol-PEG-Folate (MW 5000) is a cholesterol PEG derivative that can form micelles through molecular self-assembly and has a longer half-life in vivo. Cholesterol-PEG-Folate (MW 5000) can be used in drug delivery research .
|
-
- HY-W440718
-
|
Drug Delivery
|
Cholesterol-PEG-Mal (MW 1000) is a cholesterol PEG derivative that can form micelles through molecular self-assembly and has a longer half-life in vivo. Cholesterol-PEG-Mal (MW 1000) can be used in drug delivery research .
|
- HY-W440720
-
|
Drug Delivery
|
Cholesterol-PEG-Mal (MW 3400) is a cholesterol PEG derivative that can form micelles through molecular self-assembly and has a longer half-life in vivo. Cholesterol-PEG-Mal (MW 3400) can be used in drug delivery research .
|
- HY-W440721
-
|
Drug Delivery
|
Cholesterol-PEG-Mal (MW 5000) is a cholesterol PEG derivative that can form micelles through molecular self-assembly and has a longer half-life in vivo. Cholesterol-PEG-Mal (MW 5000) can be used in drug delivery research .
|
- HY-W440723
-
|
Drug Delivery
|
Cholesterol-PEG-Thiol (MW 2000) is a cholesterol PEG derivative that can form micelles through molecular self-assembly and has a longer half-life in vivo. Cholesterol-PEG-Thiol (MW 2000) can be used in drug delivery research .
|
- HY-W440725
-
|
Drug Delivery
|
Cholesterol-PEG-Thiol (MW 5000) is a cholesterol PEG derivative that can form micelles through molecular self-assembly and has a longer half-life in vivo. Cholesterol-PEG-Thiol (MW 5000) can be used in drug delivery research .
|
- HY-W440726
-
|
Drug Delivery
|
Cholesterol-PEG-Vinylsulfone (MW 1000) is a cholesterol PEG derivative that can form micelles through molecular self-assembly and has a longer half-life in vivo. Cholesterol-PEG-Vinylsulfone (MW 1000) can be used in drug delivery research .
|
- HY-W440728
-
|
Drug Delivery
|
Cholesterol-PEG-Vinylsulfone (MW 3400) is a cholesterol PEG derivative that can form micelles through molecular self-assembly and has a longer half-life in vivo. Cholesterol-PEG-Vinylsulfone (MW 3400) can be used in drug delivery research .
|
- HY-W440729
-
|
Drug Delivery
|
Cholesterol-PEG-Vinylsulfone (MW 5000) is a cholesterol PEG derivative that can form micelles through molecular self-assembly and has a longer half-life in vivo. Cholesterol-PEG-Vinylsulfone (MW 5000) can be used in drug delivery research .
|
- HY-W591912
-
|
Drug Delivery
|
Cholesterol-PEG-methoxy (MW 1000) is a cholesterol PEG derivative that can form micelles through molecular self-assembly and has a longer half-life in vivo. Cholesterol-PEG-methoxy (MW 1000) can be used in drug delivery research .
|
- HY-W591914
-
|
Drug Delivery
|
Cholesterol-PEG-methoxy (MW 5000) is a cholesterol PEG derivative that can form micelles through molecular self-assembly and has a longer half-life in vivo. Cholesterol-PEG-methoxy (MW 5000) can be used in drug delivery research .
|
- HY-167294
-
|
Drug Delivery
|
PLLA5000-PEG5000-Thiol is a polylactic acid derivative that forms micelles in water and initiates biodegradation by attacking ester bonds through hydrolysis. PLLA5000-PEG5000-Thiol can be used in drug delivery research .
|
- HY-167295
-
|
Drug Delivery
|
PLLA5000-PEG3000-Thiol is a polylactic acid derivative that forms micelles in water and initiates biodegradation by attacking ester bonds through hydrolysis. PLLA5000-PEG3000-Thiol can be used in drug delivery research .
|
- HY-167296
-
|
Drug Delivery
|
PLLA5000-PEG2000-Thiol is a polylactic acid derivative that forms micelles in water and initiates biodegradation by attacking ester bonds through hydrolysis. PLLA5000-PEG2000-Thiol can be used in drug delivery research .
|
- HY-167297
-
|
Drug Delivery
|
PLLA5000-PEG1000-Thiol is a polylactic acid derivative that forms micelles in water and initiates biodegradation by attacking ester bonds through hydrolysis. PLLA5000-PEG1000-Thiol can be used in drug delivery research .
|
- HY-167298
-
|
Drug Delivery
|
PLLA4000-PEG5000-Thiol is a polylactic acid derivative that forms micelles in water and initiates biodegradation by attacking ester bonds through hydrolysis. PLLA4000-PEG5000-Thiol can be used in drug delivery research .
|
- HY-167299
-
|
Drug Delivery
|
PLLA4000-PEG3000-Thiol is a polylactic acid derivative that forms micelles in water and initiates biodegradation by attacking ester bonds through hydrolysis. PLLA4000-PEG3000-Thiol can be used in drug delivery research .
|
- HY-167300
-
|
Drug Delivery
|
PLLA4000-PEG2000-Thiol is a polylactic acid derivative that forms micelles in water and initiates biodegradation by attacking ester bonds through hydrolysis. PLLA4000-PEG2000-Thiol can be used in drug delivery research .
|
- HY-167301
-
|
Drug Delivery
|
PLLA4000-PEG1000-Thiol is a polylactic acid derivative that forms micelles in water and initiates biodegradation by attacking ester bonds through hydrolysis. PLLA4000-PEG1000-Thiol can be used in drug delivery research .
|
- HY-167302
-
|
Drug Delivery
|
PLLA3000-PEG5000-Thiol is a polylactic acid derivative that forms micelles in water and initiates biodegradation by attacking ester bonds through hydrolysis. PLLA3000-PEG5000-Thiol can be used in drug delivery research .
|
- HY-167303
-
|
Drug Delivery
|
PLLA3000-PEG3000-Thiol is a polylactic acid derivative that forms micelles in water and initiates biodegradation by attacking ester bonds through hydrolysis. PLLA3000-PEG3000-Thiol can be used in drug delivery research .
|
- HY-167304
-
|
Drug Delivery
|
PLLA3000-PEG2000-Thiol is a polylactic acid derivative that forms micelles in water and initiates biodegradation by attacking ester bonds through hydrolysis. PLLA3000-PEG2000-Thiol can be used in drug delivery research .
|
- HY-167305
-
|
Drug Delivery
|
PLLA3000-PEG1000-Thiol is a polylactic acid derivative that forms micelles in water and initiates biodegradation by attacking ester bonds through hydrolysis. PLLA3000-PEG1000-Thiol can be used in drug delivery research .
|
- HY-167306
-
|
Drug Delivery
|
PLLA2000-PEG5000-Thiol is a polylactic acid derivative that forms micelles in water and initiates biodegradation by attacking ester bonds through hydrolysis. PLLA2000-PEG5000-Thiol can be used in drug delivery research .
|
- HY-167307
-
|
Drug Delivery
|
PLLA2000-PEG3000-Thiol is a polylactic acid derivative that forms micelles in water and initiates biodegradation by attacking ester bonds through hydrolysis. PLLA2000-PEG3000-Thiol can be used in drug delivery research .
|
- HY-167308
-
|
Drug Delivery
|
PLLA2000-PEG2000-Thiol is a polylactic acid derivative that forms micelles in water and initiates biodegradation by attacking ester bonds through hydrolysis. PLLA2000-PEG2000-Thiol can be used in drug delivery research .
|
- HY-167309
-
|
Drug Delivery
|
PLLA2000-PEG1000-Thiol is a polylactic acid derivative that forms micelles in water and initiates biodegradation by attacking ester bonds through hydrolysis. PLLA2000-PEG1000-Thiol can be used in drug delivery research .
|
- HY-167310
-
|
Drug Delivery
|
PLLA1000-PEG5000-Thiol is a polylactic acid derivative that forms micelles in water and initiates biodegradation by attacking ester bonds through hydrolysis. PLLA1000-PEG5000-Thiol can be used in drug delivery research .
|
- HY-167311
-
|
Drug Delivery
|
PLLA1000-PEG3000-Thiol is a polylactic acid derivative that forms micelles in water and initiates biodegradation by attacking ester bonds through hydrolysis. PLLA1000-PEG3000-Thiol can be used in drug delivery research .
|
- HY-167312
-
|
Drug Delivery
|
PLLA1000-PEG2000-Thiol is a polylactic acid derivative that forms micelles in water and initiates biodegradation by attacking ester bonds through hydrolysis. PLLA1000-PEG2000-Thiol can be used in drug delivery research .
|
- HY-167313
-
|
Drug Delivery
|
PLLA1000-PEG1000-Thiol is a polylactic acid derivative that forms micelles in water and initiates biodegradation by attacking ester bonds through hydrolysis. PLLA1000-PEG1000-Thiol can be used in drug delivery research .
|
- HY-167314
-
|
Drug Delivery
|
PLLA10000-PEG5000-Thiol is a polylactic acid derivative that forms micelles in water and initiates biodegradation by attacking ester bonds through hydrolysis. PLLA10000-PEG5000-Thiol can be used in drug delivery research .
|
- HY-167315
-
|
Drug Delivery
|
PLLA10000-PEG3000-Thiol is a polylactic acid derivative that forms micelles in water and initiates biodegradation by attacking ester bonds through hydrolysis. PLLA10000-PEG3000-Thiol can be used in drug delivery research .
|
- HY-167316
-
|
Drug Delivery
|
PLLA10000-PEG2000-Thiol is a polylactic acid derivative that forms micelles in water and initiates biodegradation by attacking ester bonds through hydrolysis. PLLA10000-PEG2000-Thiol can be used in drug delivery research .
|
- HY-167317
-
|
Drug Delivery
|
PLLA10000-PEG1000-Thiol is a polylactic acid derivative that forms micelles in water and initiates biodegradation by attacking ester bonds through hydrolysis. PLLA10000-PEG1000-Thiol can be used in drug delivery research .
|
- HY-167318
-
|
Drug Delivery
|
PLLA5000-PEG5000-SPDP is a polylactic acid derivative that can form micelles in water and the SPDP moiety can react with thiols. PLLA5000-PEG5000-SPDP can be used in drug delivery research .
|
- HY-167319
-
|
Drug Delivery
|
PLLA5000-PEG3000-SPDP is a polylactic acid derivative that can form micelles in water and the SPDP moiety can react with thiols. PLLA5000-PEG3000-SPDP can be used in drug delivery research .
|
- HY-167320
-
|
Drug Delivery
|
PLLA5000-PEG2000-SPDP is a polylactic acid derivative that can form micelles in water and the SPDP moiety can react with thiols. PLLA5000-PEG2000-SPDP can be used in drug delivery research .
|
- HY-167321
-
|
Drug Delivery
|
PLLA5000-PEG1000-SPDP is a polylactic acid derivative that can form micelles in water and the SPDP moiety can react with thiols. PLLA5000-PEG1000-SPDP can be used in drug delivery research .
|
- HY-167322
-
|
Drug Delivery
|
PLLA4000-PEG5000-SPDP is a polylactic acid derivative that can form micelles in water and the SPDP moiety can react with thiols. PLLA4000-PEG5000-SPDP can be used in drug delivery research .
|
- HY-167323
-
|
Drug Delivery
|
PLLA4000-PEG3000-SPDP is a polylactic acid derivative that can form micelles in water and the SPDP moiety can react with thiols. PLLA4000-PEG3000-SPDP can be used in drug delivery research .
|
- HY-167324
-
|
Drug Delivery
|
PLLA4000-PEG2000-SPDP is a polylactic acid derivative that can form micelles in water and the SPDP moiety can react with thiols. PLLA4000-PEG2000-SPDP can be used in drug delivery research .
|
- HY-167325
-
|
Drug Delivery
|
PLLA4000-PEG1000-SPDP is a polylactic acid derivative that can form micelles in water and the SPDP moiety can react with thiols. PLLA4000-PEG1000-SPDP can be used in drug delivery research .
|
- HY-167326
-
|
Drug Delivery
|
PLLA3000-PEG5000-SPDP is a polylactic acid derivative that can form micelles in water and the SPDP moiety can react with thiols. PLLA3000-PEG5000-SPDP can be used in drug delivery research .
|
- HY-167327
-
|
Drug Delivery
|
PLLA3000-PEG3000-SPDP is a polylactic acid derivative that can form micelles in water and the SPDP moiety can react with thiols. PLLA3000-PEG3000-SPDP can be used in drug delivery research .
|
- HY-167328
-
|
Drug Delivery
|
PLLA3000-PEG2000-SPDP is a polylactic acid derivative that can form micelles in water and the SPDP moiety can react with thiols. PLLA3000-PEG2000-SPDP can be used in drug delivery research .
|
- HY-167329
-
|
Drug Delivery
|
PLLA3000-PEG1000-SPDP is a polylactic acid derivative that can form micelles in water and the SPDP moiety can react with thiols. PLLA3000-PEG1000-SPDP can be used in drug delivery research .
|
- HY-167330
-
|
Drug Delivery
|
PLLA2000-PEG5000-SPDP is a polylactic acid derivative that can form micelles in water and the SPDP moiety can react with thiols. PLLA2000-PEG5000-SPDP can be used in drug delivery research .
|
- HY-167331
-
|
Drug Delivery
|
PLLA2000-PEG3000-SPDP is a polylactic acid derivative that can form micelles in water and the SPDP moiety can react with thiols. PLLA2000-PEG3000-SPDP can be used in drug delivery research .
|
- HY-167332
-
|
Drug Delivery
|
PLLA2000-PEG2000-SPDP is a polylactic acid derivative that can form micelles in water and the SPDP moiety can react with thiols. PLLA2000-PEG2000-SPDP can be used in drug delivery research .
|
- HY-167333
-
|
Drug Delivery
|
PLLA2000-PEG1000-SPDP is a polylactic acid derivative that can form micelles in water and the SPDP moiety can react with thiols. PLLA2000-PEG1000-SPDP can be used in drug delivery research .
|
- HY-167334
-
|
Drug Delivery
|
PLLA1000-PEG5000-SPDP is a polylactic acid derivative that can form micelles in water and the SPDP moiety can react with thiols. PLLA1000-PEG5000-SPDP can be used in drug delivery research .
|
- HY-167335
-
|
Drug Delivery
|
PLLA1000-PEG3000-SPDP is a polylactic acid derivative that can form micelles in water and the SPDP moiety can react with thiols. PLLA1000-PEG3000-SPDP can be used in drug delivery research .
|
- HY-167336
-
|
Drug Delivery
|
PLLA1000-PEG2000-SPDP is a polylactic acid derivative that can form micelles in water and the SPDP moiety can react with thiols. PLLA1000-PEG2000-SPDP can be used in drug delivery research .
|
- HY-167337
-
|
Drug Delivery
|
PLLA1000-PEG1000-SPDP is a polylactic acid derivative that can form micelles in water and the SPDP moiety can react with thiols. PLLA1000-PEG1000-SPDP can be used in drug delivery research .
|
- HY-167338
-
|
Drug Delivery
|
PLLA10000-PEG5000-SPDP is a polylactic acid derivative that can form micelles in water and the SPDP moiety can react with thiols. PLLA10000-PEG5000-SPDP can be used in drug delivery research .
|
- HY-167339
-
|
Drug Delivery
|
PLLA10000-PEG3000-SPDP is a polylactic acid derivative that can form micelles in water and the SPDP moiety can react with thiols. PLLA10000-PEG3000-SPDP can be used in drug delivery research .
|
- HY-167340
-
|
Drug Delivery
|
PLLA10000-PEG2000-SPDP is a polylactic acid derivative that can form micelles in water and the SPDP moiety can react with thiols. PLLA10000-PEG2000-SPDP can be used in drug delivery research .
|
- HY-167341
-
|
Drug Delivery
|
PLLA10000-PEG1000-SPDP is a polylactic acid derivative that can form micelles in water and the SPDP moiety can react with thiols. PLLA10000-PEG1000-SPDP can be used in drug delivery research .
|
- HY-167370
-
|
Drug Delivery
|
PLLA5000-PEG5000-BIO is a polylactic acid derivative that can form micelles in water. In addition, PLLA5000-PEG5000-BIO can bind tightly to avidin or streptavidin for protein labeling. PLLA5000-PEG5000-BIO can be used in drug delivery research .
|
- HY-167371
-
|
Drug Delivery
|
PLLA5000-PEG2000-BIO is a polylactic acid derivative that can form micelles in water. In addition, PLLA5000-PEG2000-BIO can bind tightly to avidin or streptavidin for protein labeling. PLLA5000-PEG2000-BIO can be used in drug delivery research .
|
- HY-167372
-
|
Drug Delivery
|
PLLA5000-PEG1000-BIO is a polylactic acid derivative that can form micelles in water. In addition, PLLA5000-PEG1000-BIO can bind tightly to avidin or streptavidin for protein labeling. PLLA5000-PEG1000-BIO can be used in drug delivery research .
|
- HY-167373
-
|
Drug Delivery
|
PLLA4000-PEG5000-BIO is a polylactic acid derivative that can form micelles in water. In addition, PLLA4000-PEG5000-BIO can bind tightly to avidin or streptavidin for protein labeling. PLLA4000-PEG5000-BIO can be used in drug delivery research .
|
- HY-167374
-
|
Drug Delivery
|
PLLA4000-PEG2000-BIO is a polylactic acid derivative that can form micelles in water. In addition, PLLA4000-PEG2000-BIO can bind tightly to avidin or streptavidin for protein labeling. PLLA4000-PEG2000-BIO can be used in drug delivery research .
|
- HY-167375
-
|
Drug Delivery
|
PLLA4000-PEG1000-BIO is a polylactic acid derivative that can form micelles in water. In addition, PLLA4000-PEG1000-BIO can bind tightly to avidin or streptavidin for protein labeling. PLLA4000-PEG1000-BIO can be used in drug delivery research .
|
- HY-167376
-
|
Drug Delivery
|
PLLA3000-PEG5000-BIO is a polylactic acid derivative that can form micelles in water. In addition, PLLA3000-PEG5000-BIO can bind tightly to avidin or streptavidin for protein labeling. PLLA3000-PEG5000-BIO can be used in drug delivery research .
|
- HY-167377
-
|
Drug Delivery
|
PLLA3000-PEG2000-BIO is a polylactic acid derivative that can form micelles in water. In addition, PLLA3000-PEG2000-BIO can bind tightly to avidin or streptavidin for protein labeling. PLLA3000-PEG2000-BIO can be used in drug delivery research .
|
- HY-167378
-
|
Drug Delivery
|
PLLA3000-PEG1000-BIO is a polylactic acid derivative that can form micelles in water. In addition, PLLA3000-PEG1000-BIO can bind tightly to avidin or streptavidin for protein labeling. PLLA3000-PEG1000-BIO can be used in drug delivery research .
|
- HY-167379
-
|
Drug Delivery
|
PLLA2000-PEG5000-BIO is a polylactic acid derivative that can form micelles in water. In addition, PLLA2000-PEG5000-BIO can bind tightly to avidin or streptavidin for protein labeling. PLLA2000-PEG5000-BIO can be used in drug delivery research .
|
- HY-167380
-
|
Drug Delivery
|
PLLA2000-PEG2000-BIO is a polylactic acid derivative that can form micelles in water. In addition, PLLA2000-PEG2000-BIO can bind tightly to avidin or streptavidin for protein labeling. PLLA2000-PEG2000-BIO can be used in drug delivery research .
|
- HY-167381
-
|
Drug Delivery
|
PLLA2000-PEG1000-BIO is a polylactic acid derivative that can form micelles in water. In addition, PLLA2000-PEG1000-BIO can bind tightly to avidin or streptavidin for protein labeling. PLLA2000-PEG1000-BIO can be used in drug delivery research .
|
- HY-167382
-
|
Drug Delivery
|
PLLA1000-PEG5000-BIO is a polylactic acid derivative that can form micelles in water. In addition, PLLA1000-PEG5000-BIO can bind tightly to avidin or streptavidin for protein labeling. PLLA1000-PEG5000-BIO can be used in drug delivery research .
|
- HY-167383
-
|
Drug Delivery
|
PLLA1000-PEG2000-BIO is a polylactic acid derivative that can form micelles in water. In addition, PLLA1000-PEG2000-BIO can bind tightly to avidin or streptavidin for protein labeling. PLLA1000-PEG2000-BIO can be used in drug delivery research .
|
- HY-167384
-
|
Drug Delivery
|
PLLA1000-PEG1000-BIO is a polylactic acid derivative that can form micelles in water. In addition, PLLA1000-PEG1000-BIO can bind tightly to avidin or streptavidin for protein labeling. PLLA1000-PEG1000-BIO can be used in drug delivery research .
|
- HY-167385
-
|
Drug Delivery
|
PLLA10000-PEG5000-BIO is a polylactic acid derivative that can form micelles in water. In addition, PLLA10000-PEG5000-BIO can bind tightly to avidin or streptavidin for protein labeling. PLLA10000-PEG5000-BIO can be used in drug delivery research .
|
- HY-167386
-
|
Drug Delivery
|
PLLA10000-PEG2000-BIO is a polylactic acid derivative that can form micelles in water. In addition, PLLA10000-PEG2000-BIO can bind tightly to avidin or streptavidin for protein labeling. PLLA10000-PEG2000-BIO can be used in drug delivery research .
|
- HY-167387
-
|
Drug Delivery
|
PLLA10000-PEG1000-BIO is a polylactic acid derivative that can form micelles in water. In addition, PLLA10000-PEG1000-BIO can bind tightly to avidin or streptavidin for protein labeling. PLLA10000-PEG1000-BIO can be used in drug delivery research .
|
- HY-W010851
-
HTAPS
|
Surfactants
|
Hexadecyltrimethylammonium (p-toluenesulfonate) is a cationic surfactant commonly used in micelle experiments.
|
- HY-142979
-
|
Drug Delivery
|
DSPE-PEG 2000 is a PEG-lipid that can be used to form micelles as nanoparticles for drug delivery .
|
- HY-155880
-
mPEG-NH2 (MW 350)
|
Drug Delivery
|
mPEG-amine (MW 350) can synthesize folate-conjugated polymer micelles for encapsulation of anticancer agent 9-nitrocamptothecin (HY-16560). folate-conjugated polymer micelles are effective carriers of insoluble anticancer drugs, which can avoid macrophages and play a role in endocytosis of tumor cells mediated by folate receptors (FR).
|
- HY-155881
-
mPEG-NH2 (MW 550)
|
Drug Delivery
|
mPEG-amine (MW 550) can synthesize folate-conjugated polymer micelles for encapsulation of anticancer agent 9-nitrocamptothecin (HY-16560). folate-conjugated polymer micelles are effective carriers of insoluble anticancer drugs, which can avoid macrophages and play a role in endocytosis of tumor cells mediated by folate receptors (FR).
|
- HY-155882
-
mPEG-NH2 (MW 750)
|
Drug Delivery
|
mPEG-amine (MW 750) can synthesize folate-conjugated polymer micelles for encapsulation of anticancer agent 9-nitrocamptothecin (HY-16560). folate-conjugated polymer micelles are effective carriers of insoluble anticancer drugs, which can avoid macrophages and play a role in endocytosis of tumor cells mediated by folate receptors (FR).
|
- HY-155883
-
mPEG-NH2 (MW 3400)
|
Drug Delivery
|
mPEG-amine (MW 3400) can synthesize folate-conjugated polymer micelles for encapsulation of anticancer agent 9-nitrocamptothecin (HY-16560). folate-conjugated polymer micelles are effective carriers of insoluble anticancer drugs, which can avoid macrophages and play a role in endocytosis of tumor cells mediated by folate receptors (FR).
|
- HY-155884
-
mPEG-NH2 (MW 4000)
|
Drug Delivery
|
mPEG-amine (MW 4000) can be used to synthesize folate-conjugated polymer micelles for encapsulating anticancer agent 9-nitrocamptothecin (HY-16560). folate-conjugated polymer micelles are effective carriers of insoluble anticancer drugs, which can avoid macrophages and play a role in endocytosis of tumor cells mediated by folate receptors (FR).
|
- HY-W115607
-
Poly(ethylene glycol)-bis-amine (MW 8000)
|
Drug Delivery
|
PEG-bis-amine (MW 8000) synthesizes folate-conjugated polymeric micelles for encapsulation of the anticancer agent 9-nitrocamptothecin HY-16560 (HY-16560). Folic acid-conjugated polymer micelles are effective carriers of insoluble anticancer drugs, which can avoid macrophages and play a role in endocytosis of tumor cells mediated by folate receptors (FR).
|
- HY-W591632
-
Poly(ethylene glycol)-bis-amine (MW 1000)
|
Drug Delivery
|
PEG-bis-amine (MW 1000) synthesizes folate-conjugated polymeric micelles for encapsulation of the anticancer agent 9-nitrocamptothecin HY-16560 (HY-16560). Folic acid-conjugated polymer micelles are effective carriers of insoluble anticancer drugs, which can avoid macrophages and play a role in endocytosis of tumor cells mediated by folate receptors (FR).
|
- HY-140696C
-
mPEG-Hydroxy (MW 20000); Polyethylene glycol monomethyl ether (MW 20000)
|
Drug Delivery
|
m-PEG-OH (MW 20000) can be used as a macroinitiator to participate in the synthesis of amphiphilic block copolymers. Nanoscale micelles can be prepared by using amphiphilic block copolymers to deliver active drugs. Paclitaxel (HY-B0015), a hydrophobic anticancer agent encapsulated in micelles, has stronger activity in killing cancer cells than free Paclitaxel. And it preferentially accumulates in tumor tissue with only limited distribution in healthy organs.
|
- HY-140696D
-
mPEG-Hydroxy (MW 10000); Polyethylene glycol monomethyl ether (MW 10000)
|
Drug Delivery
|
m-PEG-OH (MW 10000) can be used as a macroinitiator to participate in the synthesis of amphiphilic block copolymers. Amphiphilic block copolymers can be used to prepare nanoscale micelles to deliver active drugs. Paclitaxel (HY-B0015), a hydrophobic anticancer agent encapsulated in micelles, has stronger activity in killing cancer cells than free Paclitaxel. And it preferentially accumulates in tumor tissue with only limited distribution in healthy organs.
|
- HY-140696E
-
mPEG-Hydroxy (MW 1000); Polyethylene glycol monomethyl ether (MW 1000)
|
Drug Delivery
|
m-PEG-OH (MW 1000) can be used as a macroinitiator to participate in the synthesis of amphiphilic block copolymers. Amphiphilic block copolymers can be used to prepare nanoscale micelles to deliver active drugs. Paclitaxel (HY-B0015), a hydrophobic anticancer agent encapsulated in micelles, has stronger cancer-killing activity than free Paclitaxel. And it accumulates preferentially in tumor tissues and has only limited distribution in healthy organs.
|
- HY-B2106D
-
Decaethylene glycol monododecyl ether (C12E10); Polidocanol (10)
|
Surfactants
|
Polyoxyethylene (10) lauryl ether is a non-ionic surfactant. Polyoxyethylene (10) lauryl ether can be used to assess diffusion of proteins and nonionic micelles in agarose gels .
|
- HY-15934A
-
|
Carbohydrates
|
5-Bromo-4-chloro-3-indolyl-α-D-mannopyranoside, 93% is a cationic surfactant commonly used in micelle experiments.
|
- HY-W142692
-
|
Surfactants
|
Dodecyl β-D-glucopyranoside is a non-ionic detergent and surfactant commonly used to solubilize and purify membrane proteins in biochemical research. Dodecyl β-D-glucopyranoside also interacts with bovine serum albumin (BSA) to quench its intrinsic fluorescence. The critical micelle concentration (CMC) of Dodecyl β-D-glucopyranoside (DG) and DG/BSA complex is 2.0 mM and 2.34 mM, respectively. Micelles can be formed in aqueous solutions above this concentration .
|
- HY-W099682
-
n-Hexyl trimethylammonium bromide
|
Biochemical Assay Reagents
|
Hexyltrimethylammonium bromide is a cationic surfactant, quaternary ammonium compound, detergent, emulsifier, phase transfer catalyst, antibacterial agent, electrochemical device, corrosion inhibitor, micelle former, industrial chemical.
|
- HY-113424A
-
DOPC
|
Drug Delivery
|
1,2-Dioleoyl-sn-glycero-3-phosphocholine (DOPC) is a phospholipid and is commonly used alone, or with other components, in the generation of micelles, liposomes, and other types of artificial membranes.
|
- HY-W127457
-
|
Biochemical Assay Reagents
|
1,2-dihexanoyl-sn-glycero-3-phosphocholine is a phosphatidylcholine. It can play a role as a surfactant and is commonly used in the generation of micelles, liposomes, and other types of artificial membranes.
|
- HY-141892A
-
DSPE PEG(2000) Carboxylic Acid sodium
|
Drug Delivery
|
DSPE-PEG Carboxylic acid (sodium), MW 2000 is a PEG-lipid that can be used to form micelles as nanoparticles for drug delivery. DSPE-PEG Carboxylic acid (sodium), MW 2000 increases the blood circulation time of liposomes .
|
- HY-141571
-
|
Drug Delivery
|
DOPG sodium is a phospholipid containing oleic acid (18:1) inserted at the sn-1 and sn-2 positions. It can form a lipid bilayer in an aqueous solution and is used in the generation of micelles, liposomes, and other artificial membranes.
|
- HY-W440722
-
|
Drug Delivery
|
Cholesterol-PEG-Thiol (MW 1000) is a PEGylated lipid that forms micelles in water and can be used to prepare liposomes or nanoparticles as drug delivery systems. The thiol moiety reacts with maleimide to form a stable thioether bond .
|
- HY-W440934
-
|
Drug Delivery
|
Stearic acid-PEG-Rhodamine, MW 2000 is an amphiphilic PEG polymer which can form micelles in water. The rhodamine can be used for staining sample and easily traced by fluorescence microscopy. Rhodamine has maximum absorption at 570 nm and emission around 595 nm.
|
- HY-W440909
-
|
Drug Delivery
|
DSPE-PEG-Cy3, MW 3400 is a phospholipid PEG polymer with Cy3 dye used in labeling and fluorescence microscopy. The polymer can self-assemble in aqueous solution to form micelles/lipid bilayer and used to prepare liposomes or nanoparticles for nutrients delivery such as mRNA or DNA vaccine.
|
- HY-W440910
-
|
Drug Delivery
|
DSPE-PEG-Cy3, MW 5000 is a phospholipid PEG polymer with Cy3 dye used in labeling and fluorescence microscopy. The polymer can self-assemble in aqueous solution to form micelles/lipid bilayer and used to prepare liposomes or nanoparticles for nutrients delivery such as mRNA or DNA vaccine.
|
- HY-144009
-
|
Drug Delivery
|
DSPE-PEG-Folate, MW 3350 is a PEG derivative containing folic acid. DSPE-PEG-Folate has a targeting effect and bind to folate receptors in cancer cells. DSPE-PEG-Folate form micelles/lipid bilayer and can be used to targeted drug delivery system research .
|
- HY-W440913
-
|
Drug Delivery
|
DSPE-PEG-Cy5, MW 5000 is a PEG phospholipid with Cy5 dye used in protein/nucelic acid labeling and fluorescence microscopy. The polymer can self-assemble in aqueous solution to form micelles/lipid bilayer and used to prepare liposomes or nanoparticles for nutrients delivery such as mRNA or DNA vaccine.
|
- HY-W440912
-
|
Drug Delivery
|
DSPE-PEG-Cy5, MW 3400 is a PEG phospholipid with Cy5 dye used in protein/nucelic acid labeling and fluorescence microscopy. The polymer can self-assemble in aqueous solution to form micelles/lipid bilayer and used to prepare liposomes or nanoparticles for nutrients delivery such as mRNA or DNA vaccine.
|
- HY-W440834
-
|
Drug Delivery
|
DSPE-PEG-Azide, MW 5000 is a click chemistry reactive phospholipid polyPEG which forms lipid bilayer or micelles in an aqueous solution. The polymer can be used to prepare liposomes or nanoparticles used for delivering nutrients or therapeutic agents, for example mRNA or DNA vaccine. Reagent grade, for research use only.
|
- HY-B2106DR
-
|
Surfactants
|
Polyoxyethylene (10) lauryl ether (Standard) is the analytical standard of Polyoxyethylene (10) lauryl ether. This product is intended for research and analytical applications. Polyoxyethylene (10) lauryl ether is a non-ionic surfactant. Polyoxyethylene (10) lauryl ether can be used to assess diffusion of proteins and nonionic micelles in agarose gels .
|
- HY-W440888
-
DSPE-PEG(2000) Folate
|
Drug Delivery
|
DSPE-PEG-Folate, MW 2000 is a PEG derivative containing folic acid. DSPE-PEG-Folate, MW 2000 has a targeting effect and bind to folate receptors in cancer cells. DSPE-PEG-Folate, MW 2000 form micelles/lipid bilayer and can be used to targeted drug delivery system research.
|
- HY-W440890
-
|
Drug Delivery
|
DSPE-PEG-Folate, MW 5000 is a PEG derivative containing folic acid. DSPE-PEG-Folate, MW 5000 has a targeting effect and bind to folate receptors in cancer cells. DSPE-PEG-Folate, MW 5000 form micelles/lipid bilayer and can be used to targeted drug delivery system research .
|
- HY-W440835
-
DSPE-PEG(2000)-DBCO
|
Drug Delivery
|
DSPE-PEG-DBCO, MW 2000 is a phospholipid-PEG polymer that can be used to form micelles as lipid nanoparticles for drug delivery . DSPE-PEG-DBCO, MW 2000 is a click chemistry reagent, it contains a DBCO group that can undergo strain-promoted alkyne-azide cycloaddition (SPAAC) with molecules containing Azide groups.
|
- HY-W440936
-
|
Drug Delivery
|
Stearic acid-PEG-Rhodamine, MW 5000 is a fatty acid containing PEG polymer which can self assemble in an aqueous solution to form micelles. The polymer can be used to prepare nanoparticles for drug encapsulation. The red dye rhodamine can be easily traced by fluorescence microscopy. Rhodamine has maximum absorption at 570 nm and emission around 595 nm.
|
- HY-W440935
-
|
Drug Delivery
|
Stearic acid-PEG-Rhodamine, MW 3400 is a fatty acid containing PEG polymer which can self assemble in an aqueous solution to form micelles. The polymer can be used to prepare nanoparticles for drug encapsulation. The red dye rhodamine can be easily traced by fluorescence microscopy. Rhodamine has maximum absorption at 570 nm and emission around 595 nm.
|
- HY-W440938
-
|
Drug Delivery
|
Stearic acid-PEG-FITC, MW 2000 is an amphiphatic polyPEG which can self assemble to form micelles in water. The polymer can be used to encapsulate therapeutic agent. FITC is a green dye with peak absorption at 494 nm and maximum emission at 520 nm and can be used for staining biological samples or nanoparticles. FITC can be easily traced by fluorescence microscopy.
|
- HY-W440953
-
|
Drug Delivery
|
Stearic acid-PEG-CH2CO2H, MW 1000 is an amphiphatic PEG polymer which forms micelles in an aqueous solution for drug-loaded nanoparticles. The terminal carboxyl can react with amine via condensation reaction in the presence of HATU/EDC activator. Reagent grade, for research use only.
|
- HY-W440940
-
|
Drug Delivery
|
Stearic acid-PEG-FITC, MW 5000 is a PEG lipid which forms micelles in water and can be used for drug delivery applications. The FITC fluorescent can be easily traced by miscroscopy. FITC is a green dye with peak absorption at 494 nm and maximum emission at 520 nm and can be used for staining biological samples or nanoparticles. FITC can be easily traced by fluorescence microscopy.
|
- HY-W440939
-
|
Drug Delivery
|
Stearic acid-PEG-FITC, MW 3400 is a PEG lipid which forms micelles in water and can be used for drug delivery applications. The FITC fluorescent can be easily traced by miscroscopy. FITC is a green dye with peak absorption at 494 nm and maximum emission at 520 nm and can be used for staining biological samples or nanoparticles. FITC can be easily traced by fluorescence microscopy.
|
- HY-W440956
-
|
Drug Delivery
|
Stearic acid-PEG-CH2CO2H, MW 5000 is an amphiphilic PEG polymer which forms micelles in an aqueous solution. The aliphatic chain of stearic acid can be used to encapsulate or congregate hydrophobic therapeutic agents while the PEG chain enhances overall solubility of the polymer. Reagent grade, for research use only.
|
- HY-W440833
-
|
Drug Delivery
|
DSPE-PEG-Azide, MW 3400 is a polydisperse PEG covalently attached to a phospholipid. The polymer is an amphiphilic molecule with hydrophobic fatty acid chains and hydrophilic PEG head which enables lipid bilayer or micelles formation in water. The phospholipid PEG can be used to prepare liposome or nanoparticles for targeted drug delivery and is reactive with alkyne to form triazole bond. Reagent grade, for research use only.
|
- HY-125940
-
|
Drug Delivery
|
Sodium DPPG (1,2-Dipalmitoyl-sn-glycero-3-PG sodium) is a phospholipid that contains long-chain (16:0) palmitic acid inserted at the sn-1 and sn-2 positions, and it’s also the active component that prevents BaP molecules from entering the water subphase. DPPG sodium is used in the generation of micelles, liposomes and other types of artificial membranes .
|
- HY-W440902
-
|
Drug Delivery
|
DSPE-PEG-IA, MW 3400 is an iodoacetyll PEG lipid. The polymer can form lipid bilayer or micelles spontaneoulsy in water. The lipophilic tails can be used to encapsulate hydrophobic therapeutic agents while the hydrophilic head can be used to encapuslate hydrophilic drugs/nutrient, such as antibody, mRNA/DNA. The iodoacetyl group is reactive with thiol to produce a thioether linkage. Reagent grade, for research use only.
|
- HY-W440903
-
|
Drug Delivery
|
DSPE-PEG-DBCO, MW 2000 is a cyclooctyne containing phospholipid PEG polymer. The polymer can self-assemble spontaneously in water to form micelles/lipid bilayer. It can be used to prepare nanoparticles or liposomes as drug carrier in targeted drug delivery system. The DBCO can react with azide molecule via copper free click chemistry to form a stable triazole bond. Reagent grade, for research use only.
|
- HY-W414390
-
2-Cyclohexylethyl-4-O-(alpha-D-glucopyranosyl)-beta-D-glucopyranoside, 98%
|
Surfactants
|
2-Cyclohexylethyl-4-O-(α-D-glucopyranosyl)-β-D-glucopyranoside, 98% (2-Cyclohexylethyl-4-O-(alpha-D-glucopyranosyl)-beta-D-glucopyranoside, 98%) is a detergent that can be used for the purification and crystallization of membrane-bound proteins in their native structure. It can self-assemble into micelles and vesicles in aqueous solution and can be used for the study of biomembrane models.
|
- HY-W440926
-
|
Drug Delivery
|
DSPE-PEG-DBCO, MW 2000 is a cyclooctyne containing phospholipid PEG polymer. The polymer can self-assemble spontaneously in water to form micelles/lipid bilayer. It can be used to prepare nanoparticles or liposomes as drug carrier in targeted drug delivery system. The DBCO can react with azide molecule via copper free click chemistry to form a stable triazole bond. Reagent grade, for research use only.
|
- HY-W440832
-
DSPE-PEG(2000) Azide
|
Drug Delivery
|
DSPE-PEG-Azide (MW 2000) is an azide containing lipid that can be used to form micelles as nanoparticles for drug delivery . DSPE-PEG-Azide (MW 2000) is a click chemistry reagent, it contains an Azide group and can undergo copper-catalyzed azide-alkyne cycloaddition reaction (CuAAc) with molecules containing Alkyne groups. It can also undergo strain-promoted alkyne-azide cycloaddition (SPAAC) reactions with molecules containing DBCO or BCN groups.
|
- HY-W440885
-
|
Drug Delivery
|
DSPE-PEG-Ald, MW 5000 is a phospholipid PEG polymer which can self-assemble spontaneously in water with their hydrophilic heads oriented toward the water (micelles). The polymer can be used to prepare liposome as a drug nanocarrier for administration of nutrients and therapeutic drugs, such as lipid nanoparticles in mRNA or DNA vaccines. The aldehyde is reactive with aminooxy to form a stable oxime linkage or with amine at pH < 7 to form a reversible imine bond. Reagent grade, for research use only.
|
- HY-123622
-
|
Surfactants
|
CYMAL-5, 98% (TLC) is a cycloalkyl aliphatic saccharide. CYMAL-5, 98% (TLC) is a glycosidic surfactant (GS) with a chiral maltose polar head group and a cyclohexyl-pentyl hydrophobic tail. CYMAL-5, 98% (TLC) is a non-ionic detergent that has a tenfold lower critical micelle concentration (CMC) in comparison with OG, and has previously been used for membrane protein extraction or crystallization of membrane proteins for X-ray crystallographic studies .
|
- HY-W099547
-
|
Biochemical Assay Reagents
|
Dihexadecyl hydrogen phosphateIt is an organic compound belonging to phospholipids. It's often used as an emulsifier, which means it helps mix two substances together that don't usually mix well, such as oil and water. Dihexadecyl hydrogen phosphateIt has several applications in the food industry, especially in the production of processed foods where it improves texture and stability. Additionally, it has applications in the pharmaceutical industry where it can be used ain the generation of micelles, liposomes, and other types of artificial membranes.
|
Cat. No. |
Product Name |
Target |
Research Area |
-
- HY-P10318
-
|
GLP Receptor
|
Endocrinology
|
SHR-2042 is a selective agonist of the GLP-1 receptor.SHR-2042 improves glycemic control by activating the GLP-1 receptor, enhancing insulin secretion and inhibiting glucagon secretion. SHR-2042 combined with sodium N-(8-[2-hydroxybenzoyl] amino) caprylate (SNAC) promotes monomerization through the formation of micelles and improves oral absorption efficiency .
|
Cat. No. |
Product Name |
Category |
Target |
Chemical Structure |
Cat. No. |
Product Name |
Chemical Structure |
-
- HY-125940S
-
|
DPPG-d62 (sodium) is deuterium labeled DPPG. DPPG sodium (1,2-Dipalmitoyl-sn-glycero-3-PG sodium) is a phospholipid containing the long-chain(16:0) palmitic acid inserted at the sn-1 and sn-2 positions. DPPG sodium is used in the generation of micelles, l
|
-
-
- HY-113424AS
-
|
1,2-Dioleoyl-sn-glycero-3-phosphocholine-d9 is deuterium labeled 1,2-Dioleoyl-sn-glycero-3-phosphocholine. 1,2-Dioleoyl-sn-glycero-3-phosphocholine (DOPC) is a phospholipid and is commonly used alone, or with other components, in the generation of micelle
|
-
Cat. No. |
Product Name |
|
Classification |
-
- HY-167388
-
|
|
Alkynes
|
PLLA5000-PEG5000-ALK is a polylactic acid derivative that can form micelles in water. PLLA5000-PEG5000-ALK can be used in drug delivery research .
|
-
- HY-167389
-
|
|
Alkynes
|
PLLA5000-PEG3000-ALK is a polylactic acid derivative that can form micelles in water. PLLA5000-PEG3000-ALK can be used in drug delivery research .
|
-
- HY-167390
-
|
|
Alkynes
|
PLLA5000-PEG2000-ALK is a polylactic acid derivative that can form micelles in water. PLLA5000-PEG2000-ALK can be used in drug delivery research .
|
-
- HY-167391
-
|
|
Alkynes
|
PLLA5000-PEG1000-ALK is a polylactic acid derivative that can form micelles in water. PLLA5000-PEG1000-ALK can be used in drug delivery research .
|
-
- HY-167392
-
|
|
Alkynes
|
PLLA4000-PEG5000-ALK is a polylactic acid derivative that can form micelles in water. PLLA4000-PEG5000-ALK can be used in drug delivery research .
|
-
- HY-167393
-
|
|
Alkynes
|
PLLA4000-PEG3000-ALK is a polylactic acid derivative that can form micelles in water. PLLA4000-PEG3000-ALK can be used in drug delivery research .
|
-
- HY-167394
-
|
|
Alkynes
|
PLLA4000-PEG2000-ALK is a polylactic acid derivative that can form micelles in water. PLLA4000-PEG2000-ALK can be used in drug delivery research .
|
-
- HY-167395
-
|
|
Alkynes
|
PLLA4000-PEG1000-ALK is a polylactic acid derivative that can form micelles in water. PLLA4000-PEG1000-ALK can be used in drug delivery research .
|
-
- HY-167396
-
|
|
Alkynes
|
PLLA3000-PEG5000-ALK is a polylactic acid derivative that can form micelles in water. PLLA3000-PEG5000-ALK can be used in drug delivery research .
|
-
- HY-167397
-
|
|
Alkynes
|
PLLA3000-PEG3000-ALK is a polylactic acid derivative that can form micelles in water. PLLA3000-PEG3000-ALK can be used in drug delivery research .
|
-
- HY-167398
-
|
|
Alkynes
|
PLLA3000-PEG2000-ALK is a polylactic acid derivative that can form micelles in water. PLLA3000-PEG2000-ALK can be used in drug delivery research .
|
-
- HY-167399
-
|
|
Alkynes
|
PLLA3000-PEG1000-ALK is a polylactic acid derivative that can form micelles in water. PLLA3000-PEG1000-ALK can be used in drug delivery research .
|
-
- HY-167400
-
|
|
Alkynes
|
PLLA2000-PEG5000-ALK is a polylactic acid derivative that can form micelles in water. PLLA2000-PEG5000-ALK can be used in drug delivery research .
|
-
- HY-167401
-
|
|
Alkynes
|
PLLA2000-PEG3000-ALK is a polylactic acid derivative that can form micelles in water. PLLA2000-PEG3000-ALK can be used in drug delivery research .
|
-
- HY-167402
-
|
|
Alkynes
|
PLLA2000-PEG2000-ALK is a polylactic acid derivative that can form micelles in water. PLLA2000-PEG2000-ALK can be used in drug delivery research .
|
-
- HY-167403
-
|
|
Alkynes
|
PLLA2000-PEG1000-ALK is a polylactic acid derivative that can form micelles in water. PLLA2000-PEG1000-ALK can be used in drug delivery research .
|
-
- HY-167404
-
|
|
Alkynes
|
PLLA1000-PEG5000-ALK is a polylactic acid derivative that can form micelles in water. PLLA1000-PEG5000-ALK can be used in drug delivery research .
|
-
- HY-167405
-
|
|
Alkynes
|
PLLA1000-PEG3000-ALK is a polylactic acid derivative that can form micelles in water. PLLA1000-PEG3000-ALK can be used in drug delivery research .
|
-
- HY-167406
-
|
|
Alkynes
|
PLLA1000-PEG2000-ALK is a polylactic acid derivative that can form micelles in water. PLLA1000-PEG2000-ALK can be used in drug delivery research .
|
-
- HY-167407
-
|
|
Alkynes
|
PLLA1000-PEG1000-ALK is a polylactic acid derivative that can form micelles in water. PLLA1000-PEG1000-ALK can be used in drug delivery research .
|
-
- HY-167408
-
|
|
Alkynes
|
PLLA10000-PEG5000-ALK is a polylactic acid derivative that can form micelles in water. PLLA10000-PEG5000-ALK can be used in drug delivery research .
|
-
- HY-167409
-
|
|
Alkynes
|
PLLA10000-PEG3000-ALK is a polylactic acid derivative that can form micelles in water. PLLA10000-PEG3000-ALK can be used in drug delivery research .
|
-
- HY-167410
-
|
|
Alkynes
|
PLLA10000-PEG2000-ALK is a polylactic acid derivative that can form micelles in water. PLLA10000-PEG2000-ALK can be used in drug delivery research .
|
-
- HY-W440834
-
|
|
Azide
|
DSPE-PEG-Azide, MW 5000 is a click chemistry reactive phospholipid polyPEG which forms lipid bilayer or micelles in an aqueous solution. The polymer can be used to prepare liposomes or nanoparticles used for delivering nutrients or therapeutic agents, for example mRNA or DNA vaccine. Reagent grade, for research use only.
|
-
- HY-W440694
-
|
|
Azide
|
Cholesterol-PEG-Azide (MW 2000) is a pegylated lipids which can be used for preparation of liposome or nanoparticle. The lipophilic moiety can encapsulate hydrophobic drugs whereas the hydrophilic PEG chain helps the overal water solubility of the micelles. Cholesterol-PEG-Azide (MW 2000) can be reacted with alkyne via CuAAC or SPAAC click chemistry.
|
-
- HY-W440835
-
DSPE-PEG(2000)-DBCO
|
|
DBCO
|
DSPE-PEG-DBCO, MW 2000 is a phospholipid-PEG polymer that can be used to form micelles as lipid nanoparticles for drug delivery . DSPE-PEG-DBCO, MW 2000 is a click chemistry reagent, it contains a DBCO group that can undergo strain-promoted alkyne-azide cycloaddition (SPAAC) with molecules containing Azide groups.
|
-
- HY-W440833
-
|
|
Azide
|
DSPE-PEG-Azide, MW 3400 is a polydisperse PEG covalently attached to a phospholipid. The polymer is an amphiphilic molecule with hydrophobic fatty acid chains and hydrophilic PEG head which enables lipid bilayer or micelles formation in water. The phospholipid PEG can be used to prepare liposome or nanoparticles for targeted drug delivery and is reactive with alkyne to form triazole bond. Reagent grade, for research use only.
|
-
- HY-W440832
-
DSPE-PEG(2000) Azide
|
|
Azide
|
DSPE-PEG-Azide (MW 2000) is an azide containing lipid that can be used to form micelles as nanoparticles for drug delivery . DSPE-PEG-Azide (MW 2000) is a click chemistry reagent, it contains an Azide group and can undergo copper-catalyzed azide-alkyne cycloaddition reaction (CuAAc) with molecules containing Alkyne groups. It can also undergo strain-promoted alkyne-azide cycloaddition (SPAAC) reactions with molecules containing DBCO or BCN groups.
|
Cat. No. |
Product Name |
|
Classification |
-
- HY-156197
-
|
|
Cholesterol
|
Biotin-cholesterol is a biotinylated form of Cholesterol (HY-N0322). Biotin-cholesterol can be used in the synthesis of biotin-conjugated liposomes and micelles for drug delivery .
|
-
- HY-111915
-
18:1 PA
|
|
Phospholipids
|
1,2-Dioleoyl-sn-glycero-3-phosphate sodium salt (18:1 PA) is an anionic lipid that can be used to prepare liposomes, micelles and artificial membranes .
|
-
- HY-155882
-
mPEG-NH2 (MW 750)
|
|
Polymers
|
mPEG-amine (MW 750) can synthesize folate-conjugated polymer micelles for encapsulation of anticancer agent 9-nitrocamptothecin (HY-16560). folate-conjugated polymer micelles are effective carriers of insoluble anticancer drugs, which can avoid macrophages and play a role in endocytosis of tumor cells mediated by folate receptors (FR).
|
-
- HY-W441013
-
|
|
Pegylated Lipids
|
DSPE-PEG-NHS, MW 1000 is an amine reactive phospholipid. The reaction between NHS esters and amines forms a stable amide bond. The polymer is amphiphilic and capable of forming micelles or lipid bilayer in aqueous solution.
|
-
- HY-W590593
-
|
|
Pegylated Lipids
|
mPEG-Cholesterol,MW 2000 is a PEG derivative which self-assembles in water to form micelle-like structure. The cholesterol tail can be used to encapsulate hydrophobic drugs while the PEG chain ehances the water solubility of the micelles.
|
-
- HY-W591913
-
|
|
Pegylated Lipids
|
Cholesterol-PEG-methoxy, MW 2000 is a PEG derivative which self-assembles in water to form micelle-like structure. The cholesterol tail can be used to encapsulate hydrophobic drugs while the PEG chain ehances the water solubility of the micelles.
|
-
- HY-142979
-
|
|
Pegylated Lipids
|
DSPE-PEG 2000 is a PEG-lipid that can be used to form micelles as nanoparticles for drug delivery .
|
-
- HY-155880
-
mPEG-NH2 (MW 350)
|
|
Polymers
|
mPEG-amine (MW 350) can synthesize folate-conjugated polymer micelles for encapsulation of anticancer agent 9-nitrocamptothecin (HY-16560). folate-conjugated polymer micelles are effective carriers of insoluble anticancer drugs, which can avoid macrophages and play a role in endocytosis of tumor cells mediated by folate receptors (FR).
|
-
- HY-155881
-
mPEG-NH2 (MW 550)
|
|
Polymers
|
mPEG-amine (MW 550) can synthesize folate-conjugated polymer micelles for encapsulation of anticancer agent 9-nitrocamptothecin (HY-16560). folate-conjugated polymer micelles are effective carriers of insoluble anticancer drugs, which can avoid macrophages and play a role in endocytosis of tumor cells mediated by folate receptors (FR).
|
-
- HY-155883
-
mPEG-NH2 (MW 3400)
|
|
Polymers
|
mPEG-amine (MW 3400) can synthesize folate-conjugated polymer micelles for encapsulation of anticancer agent 9-nitrocamptothecin (HY-16560). folate-conjugated polymer micelles are effective carriers of insoluble anticancer drugs, which can avoid macrophages and play a role in endocytosis of tumor cells mediated by folate receptors (FR).
|
-
- HY-155884
-
mPEG-NH2 (MW 4000)
|
|
Polymers
|
mPEG-amine (MW 4000) can be used to synthesize folate-conjugated polymer micelles for encapsulating anticancer agent 9-nitrocamptothecin (HY-16560). folate-conjugated polymer micelles are effective carriers of insoluble anticancer drugs, which can avoid macrophages and play a role in endocytosis of tumor cells mediated by folate receptors (FR).
|
-
- HY-W115607
-
Poly(ethylene glycol)-bis-amine (MW 8000)
|
|
Polymers
|
PEG-bis-amine (MW 8000) synthesizes folate-conjugated polymeric micelles for encapsulation of the anticancer agent 9-nitrocamptothecin HY-16560 (HY-16560). Folic acid-conjugated polymer micelles are effective carriers of insoluble anticancer drugs, which can avoid macrophages and play a role in endocytosis of tumor cells mediated by folate receptors (FR).
|
-
- HY-W591632
-
Poly(ethylene glycol)-bis-amine (MW 1000)
|
|
Polymers
|
PEG-bis-amine (MW 1000) synthesizes folate-conjugated polymeric micelles for encapsulation of the anticancer agent 9-nitrocamptothecin HY-16560 (HY-16560). Folic acid-conjugated polymer micelles are effective carriers of insoluble anticancer drugs, which can avoid macrophages and play a role in endocytosis of tumor cells mediated by folate receptors (FR).
|
-
- HY-139818
-
|
|
Polymers
|
Mal-PEG-PLA (PEG MW 3000 & PLA MW 70,000) is a block copolymer, which can be used to preparenanoparticles and micelles for targeted drug delivery .
|
-
- HY-113424A
-
DOPC
|
|
Phospholipids
|
1,2-Dioleoyl-sn-glycero-3-phosphocholine (DOPC) is a phospholipid and is commonly used alone, or with other components, in the generation of micelles, liposomes, and other types of artificial membranes.
|
-
- HY-W127457
-
|
|
Phospholipids
|
1,2-dihexanoyl-sn-glycero-3-phosphocholine is a phosphatidylcholine. It can play a role as a surfactant and is commonly used in the generation of micelles, liposomes, and other types of artificial membranes.
|
-
- HY-113437A
-
|
|
Phospholipids
|
1,2-Dipalmitoyl-sn-glycerol 3-phosphate sodium (compound 3-F7) is a phosphatidic acid and a human endogenous metabolite . It is used in the generation of micelles, liposomes, and artificial membranes.
|
-
- HY-141892A
-
DSPE PEG(2000) Carboxylic Acid sodium
|
|
Pegylated Lipids
|
DSPE-PEG Carboxylic acid (sodium), MW 2000 is a PEG-lipid that can be used to form micelles as nanoparticles for drug delivery. DSPE-PEG Carboxylic acid (sodium), MW 2000 increases the blood circulation time of liposomes .
|
-
- HY-W800733
-
1,2-Dilauroyl-sn-glycero-3-phosphorylglycerol; PG(12:0/12:0)
|
|
Phospholipids
|
DLPG is a phospholipid containing lauric acid (12 chain fatty acid) inserted at the sn-1 and sn-2 positions. Its phosphate group is attached to glycerol. It is used in the generation of micelles, liposomes, and other artificial membranes.
|
-
- HY-141571
-
|
|
Phospholipids
|
DOPG sodium is a phospholipid containing oleic acid (18:1) inserted at the sn-1 and sn-2 positions. It can form a lipid bilayer in an aqueous solution and is used in the generation of micelles, liposomes, and other artificial membranes.
|
-
- HY-W440690
-
|
|
Pegylated Lipids
|
Cholesterol-PEG-Amine (MW 2000) is a pegylated lipids which can be used for preparation of liposome or nanoparticle. The lipophilic moiety can encapsulate hydrophobic drugs whereas the hydrophilic PEG chain helps the overal water solubility of the micelles.
|
-
- HY-W440724
-
|
|
Pegylated Lipids
|
Cholesterol-PEG-Thiol (MW 3400) is an amphiphatic PEG derivative which forms micelles in water and can be used to prepare liposomes or nanoparticles for drug delivery system. The thiol moiety is reactive with maleimide to form a stable thioether bond.
|
-
- HY-W322575
-
DHPC
|
|
Phospholipids
|
1,2-Diheptadecanoyl-sn-glycero-3-phosphorylcholine (DHPC) is a biologically active phospholipid compound and a derivative of phosphatidylcholine (PC) . It can be used in the generation of micelles, liposomes, and other types of artificial membranes.
|
-
- HY-W440927
-
|
|
Pegylated Lipids
|
Stearic acid-PEG-NHS, MW 2,000 is an amphiphatic PEG polymer which forms micelles in an aqueous solution for drug-loaded nanoparticles. The NHS ester is reactive with amine to form a stable amide bond. Reagent grade, for research purpose.
|
-
- HY-W440934
-
|
|
Pegylated Lipids
Fluorescent Lipids
|
Stearic acid-PEG-Rhodamine, MW 2000 is an amphiphilic PEG polymer which can form micelles in water. The rhodamine can be used for staining sample and easily traced by fluorescence microscopy. Rhodamine has maximum absorption at 570 nm and emission around 595 nm.
|
-
- HY-W590536
-
1-Palmitoyl-2-Lauroyl-sn-glycero-3-Phosphatidylcholine; 1-Palmitoyl-2-Lauroyl-sn-glycero-3-Phosphocholine
|
|
Phospholipids
|
1,2-PLPC is a phospholipid containing palmitoyl (16:0) and lauryl (12:0) acyl substituents at the sn-1 and sn-2 positions, respectively. It can be used in the generation of micelles, liposomes, and other types of artificial membranes.
|
-
- HY-W040185
-
1,2-DPPA sodium; PA(14:0/14:0) sodium; 1,2-Dimyristoyl-sn-glycero-3-phosphate sodium
|
|
Phospholipids
|
1,2-Dimyristoyl-sn-glycero-3-phosphate monosodium is a phospholipid containing the long-chain (14:0) myristic acid inserted at the sn-1 and sn-2 positions. It can be used in the generation of micelles, liposomes, and other types of artificial membranes.
|
-
- HY-157721
-
DBPC
|
|
Phospholipids
|
1,2-Dibehenoyl-sn-glycero-3-phosphocholine (DBPC) is a phospholipid found in cell membranes. 1, 2-dibehenoyl-SN-glycero-3-phosphocholine can be used to generate micelles, liposomes, and other types of artificial membranes .
|
-
- HY-W440909
-
|
|
Pegylated Lipids
Fluorescent Lipids
|
DSPE-PEG-Cy3, MW 3400 is a phospholipid PEG polymer with Cy3 dye used in labeling and fluorescence microscopy. The polymer can self-assemble in aqueous solution to form micelles/lipid bilayer and used to prepare liposomes or nanoparticles for nutrients delivery such as mRNA or DNA vaccine.
|
-
- HY-W440910
-
|
|
Pegylated Lipids
Fluorescent Lipids
|
DSPE-PEG-Cy3, MW 5000 is a phospholipid PEG polymer with Cy3 dye used in labeling and fluorescence microscopy. The polymer can self-assemble in aqueous solution to form micelles/lipid bilayer and used to prepare liposomes or nanoparticles for nutrients delivery such as mRNA or DNA vaccine.
|
-
- HY-W440706
-
|
|
Pegylated Lipids
|
Cholesterol-PEG-alcohol (MW 2000) is a pegylated lipids which can be used for preparation of liposome or nanoparticle. The lipophilic moiety can encapsulate hydrophobic drugs whereas the hydrophilic PEG chain helps the overal water solubility of the micelles. The amine can react with an activated NHS ester to form a stable amide bond.
|
-
- HY-144009
-
|
|
Pegylated Lipids
|
DSPE-PEG-Folate, MW 3350 is a PEG derivative containing folic acid. DSPE-PEG-Folate has a targeting effect and bind to folate receptors in cancer cells. DSPE-PEG-Folate form micelles/lipid bilayer and can be used to targeted drug delivery system research .
|
-
- HY-W440913
-
|
|
Pegylated Lipids
Fluorescent Lipids
|
DSPE-PEG-Cy5, MW 5000 is a PEG phospholipid with Cy5 dye used in protein/nucelic acid labeling and fluorescence microscopy. The polymer can self-assemble in aqueous solution to form micelles/lipid bilayer and used to prepare liposomes or nanoparticles for nutrients delivery such as mRNA or DNA vaccine.
|
-
- HY-W440912
-
|
|
Pegylated Lipids
Fluorescent Lipids
|
DSPE-PEG-Cy5, MW 3400 is a PEG phospholipid with Cy5 dye used in protein/nucelic acid labeling and fluorescence microscopy. The polymer can self-assemble in aqueous solution to form micelles/lipid bilayer and used to prepare liposomes or nanoparticles for nutrients delivery such as mRNA or DNA vaccine.
|
-
- HY-113925
-
1,2-DLPA Sodium; (2R)-2,3-bis(dodecanoyloxy)propyl hydrogen phosphate sodium
|
|
Phospholipids
|
1,2-Dilauroyl-sn-glycero-3-phosphate (1,2-DLPA) sodium is a phospholipid containing the medium-chain (12:0) lauric acid inserted at the sn-1 and sn-2 positions. It can be used in the generation of micelles, liposomes, and other types of artificial membranes.
|
-
- HY-W339838
-
14:0 Lyso PG
|
|
Phospholipids
|
1-Myristoyl-2-hydroxy-sn-glycero-3-PG sodium is a lysophospholipid containing myristic acid (14:0) at the sn-1 position. It has been used in the generation of micelles, liposomes, and other types of artificial membranes, including lipid-based drug carrier systems.
|
-
- HY-W440888
-
DSPE-PEG(2000) Folate
|
|
Pegylated Lipids
|
DSPE-PEG-Folate, MW 2000 is a PEG derivative containing folic acid. DSPE-PEG-Folate, MW 2000 has a targeting effect and bind to folate receptors in cancer cells. DSPE-PEG-Folate, MW 2000 form micelles/lipid bilayer and can be used to targeted drug delivery system research.
|
-
- HY-W343736
-
1,3-DPPE; 1,3-Dipalmitoyl-sn-glycero-2-PE
|
|
Phospholipids
|
1,3-Dipalmitoyl-glycero-2-phosphoethanolamine is a phospholipid containing the saturated long-chain (16:0) stearic acid inserted at the sn-1 and sn-3 positions and PE at the sn-2 site. It can be used in the generation of micelles, liposomes, and other types of artificial membranes.
|
-
- HY-141614
-
Phosphatidylcholine Diarachidoyl; 1,2-DAPC; L-α-Diarachidonoyl lecithin
|
|
Phospholipids
|
1,2-Diarachidoyl-sn-glycero-3-phosphocholine (1,2-DAPC) is a phospholipid containing the saturated long-chain (20:0) arachidic acid inserted at the sn-1 and sn-2 positions. It can be used in the generation of micelles, liposomes, and other types of artificial membranes.
|
-
- HY-W800734
-
MPPC; PC(14:0/16:0)
|
|
Phospholipids
|
1-Myristoyl-2-palmitoyl-sn-glycero-3-phosphocholine (MPPC) is an asymmetrical phosphatidylcholine containing a myristic acid (14:0) at the sn-1 position and a palmitic acid (16:0) at the sn-2 position. It is commonly used in the generation of micelles, liposomes, and other types of artificial membranes.
|
-
- HY-W440694
-
|
|
Pegylated Lipids
|
Cholesterol-PEG-Azide (MW 2000) is a pegylated lipids which can be used for preparation of liposome or nanoparticle. The lipophilic moiety can encapsulate hydrophobic drugs whereas the hydrophilic PEG chain helps the overal water solubility of the micelles. Cholesterol-PEG-Azide (MW 2000) can be reacted with alkyne via CuAAC or SPAAC click chemistry.
|
-
- HY-134174
-
|
|
Phospholipids
|
1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphate is a phospholipid containing saturated palmitic acid (16:0) and monounsaturated oleic acid (18:1) inserted at the sn-1 and sn-2 positions, respectively. It can be used in the generation of micelles, liposomes, and other types of artificial membranes.
|
-
- HY-W440890
-
|
|
Pegylated Lipids
|
DSPE-PEG-Folate, MW 5000 is a PEG derivative containing folic acid. DSPE-PEG-Folate, MW 5000 has a targeting effect and bind to folate receptors in cancer cells. DSPE-PEG-Folate, MW 5000 form micelles/lipid bilayer and can be used to targeted drug delivery system research .
|
-
- HY-W440835
-
DSPE-PEG(2000)-DBCO
|
|
Pegylated Lipids
|
DSPE-PEG-DBCO, MW 2000 is a phospholipid-PEG polymer that can be used to form micelles as lipid nanoparticles for drug delivery . DSPE-PEG-DBCO, MW 2000 is a click chemistry reagent, it contains a DBCO group that can undergo strain-promoted alkyne-azide cycloaddition (SPAAC) with molecules containing Azide groups.
|
-
- HY-W440936
-
|
|
Pegylated Lipids
Fluorescent Lipids
|
Stearic acid-PEG-Rhodamine, MW 5000 is a fatty acid containing PEG polymer which can self assemble in an aqueous solution to form micelles. The polymer can be used to prepare nanoparticles for drug encapsulation. The red dye rhodamine can be easily traced by fluorescence microscopy. Rhodamine has maximum absorption at 570 nm and emission around 595 nm.
|
-
- HY-W440935
-
|
|
Pegylated Lipids
Fluorescent Lipids
|
Stearic acid-PEG-Rhodamine, MW 3400 is a fatty acid containing PEG polymer which can self assemble in an aqueous solution to form micelles. The polymer can be used to prepare nanoparticles for drug encapsulation. The red dye rhodamine can be easily traced by fluorescence microscopy. Rhodamine has maximum absorption at 570 nm and emission around 595 nm.
|
-
- HY-W440991
-
|
|
Pegylated Lipids
|
DOPE-PEG-Amine (MW 2000) is a polydisperse PEG covalently attached to a phospholipid. The polymer is an amphiphilic molecule with hydrophobic fatty acid chains and hydrophilic PEG head which enables lipid bilayer or micelle formation in water. The phospholipid PEG can be used to prepare liposome or nanoparticles for targeted drug delivery and is reactive with alkyne to form a triazole ring.
|
-
- HY-145505
-
18:1 Lyso-PG; 1-Oleoyl-2-hydroxy-sn-glycero-3-phospho-(1'-rac-glycerol); 1-Oleoyl-2-hydroxy-sn-glycero-3-phosphoglycerol
|
|
Phospholipids
|
1-Oleoyl-2-hydroxy-sn-glycero-3-PG (18:1 Lyso PE) sodium is a lysophospholipid containing oleic acid (18:1) at the sn-1 position. It can be used in the generation of micelles, liposomes, and other types of artificial membranes, including lipid-based drug carrier systems.
|
-
- HY-W440938
-
|
|
Pegylated Lipids
Fluorescent Lipids
|
Stearic acid-PEG-FITC, MW 2000 is an amphiphatic polyPEG which can self assemble to form micelles in water. The polymer can be used to encapsulate therapeutic agent. FITC is a green dye with peak absorption at 494 nm and maximum emission at 520 nm and can be used for staining biological samples or nanoparticles. FITC can be easily traced by fluorescence microscopy.
|
-
- HY-W440940
-
|
|
Pegylated Lipids
Fluorescent Lipids
|
Stearic acid-PEG-FITC, MW 5000 is a PEG lipid which forms micelles in water and can be used for drug delivery applications. The FITC fluorescent can be easily traced by miscroscopy. FITC is a green dye with peak absorption at 494 nm and maximum emission at 520 nm and can be used for staining biological samples or nanoparticles. FITC can be easily traced by fluorescence microscopy.
|
- HY-W440939
-
|
|
Pegylated Lipids
Fluorescent Lipids
|
Stearic acid-PEG-FITC, MW 3400 is a PEG lipid which forms micelles in water and can be used for drug delivery applications. The FITC fluorescent can be easily traced by miscroscopy. FITC is a green dye with peak absorption at 494 nm and maximum emission at 520 nm and can be used for staining biological samples or nanoparticles. FITC can be easily traced by fluorescence microscopy.
|
- HY-W440945
-
|
|
Pegylated Lipids
|
Stearic acid-PEG-amine, MW 2000 is an amphiphilic PEG polymer which forms micelles in an aqueous solution. The terminal amine can react with an NHS ester to form a stable amide linkage. The aliphatic chain of stearic acid can be used to encapsulate or congregate hydrophobic therapeutic agents while the PEG chain enhances overall solubility of the polymer. Reagent grade, for research use only.
|
- HY-W591332
-
|
|
Pegylated Lipids
|
DMPE-mPEG, MW 2000 is a PEGylated 1,2-Dimyristoyl-sn-glycero-3-phosphoethanolamine (14:0 PE) compound with a methyl group at the other end of the PEG chain. The PEG polymer exhibits amphiphatic behavior and helps to form stable micelles in an aqueous solution. It can be used to prepare nanoparticles or liposomes for targeted drug delivery applications.
|
- HY-145506
-
18:0 Lyso PG sodium
|
|
Phospholipids
|
1-Stearoyl-2-hydroxy-sn-glycero-3-phospho-(1'-rac-glycerol) (18:0 Lyso PE) sodium is a lysophospholipid containing stearic acid (18:0) at the sn-1 position. It can be used in the generation of micelles, liposomes, and other types of artificial membranes, including lipid-based drug carrier systems.
|
- HY-145507
-
1-Palmitoyl-2-hydroxy-sn-glycero-3-PG sodium; 16:0 Lyso PG; PG(16:0/0:0); 1-Hexadecanoyl-sn-glycero-3-phospho-(1'racglycerol) (sodium)
|
|
Phospholipids
|
1-Palmitoyl-2-hydroxy-sn-glycero-3-phospho-(1'-rac-glycerol) (16:0 Lyso PE) sodium is a lysophospholipid containing palmitic acid (16:0) at the sn-1 position. It can be used in the generation of micelles, liposomes, and other types of artificial membranes, including lipid-based drug carrier systems.
|
- HY-125940
-
|
|
Phospholipids
|
Sodium DPPG (1,2-Dipalmitoyl-sn-glycero-3-PG sodium) is a phospholipid that contains long-chain (16:0) palmitic acid inserted at the sn-1 and sn-2 positions, and it’s also the active component that prevents BaP molecules from entering the water subphase. DPPG sodium is used in the generation of micelles, liposomes and other types of artificial membranes .
|
- HY-160269
-
|
|
Pegylated Lipids
Fluorescent Lipids
|
DSPE-PEG-Fluor 488,MW 2000 is a PEG-dye-lipid conjugate consisting of a DSPE phospholipid and a Fluor 488 dye. DSPE is a phospholipid that spontaneously forms micelles in a water medium, and Fluor 488 is a cyanine dye that is widely used in fluorescence microscopy. Fluor 488 has excitation and emission maxima at 499 nm and 520 nm. Polyethylene glycol lipids are commonly used for the stabilization of lipid nanoparticles .
|
- HY-W440954
-
|
|
Pegylated Lipids
|
Stearic acid-PEG-CH2CO2H, MW 2000 is a heterobifunctional polyPEG with 18-carbon aliphatic chain and carboxyl. The polymer has stearic acid as the hydrophobic tail and PEG as the hydrophilic chain, therefore it forms micelles in water. Carboxyl can react with amine in the presence of activator, such as HATU/EDC to generate a stable amide bond. Reagent grade, for research use only.
|
- HY-W440832
-
DSPE-PEG(2000) Azide
|
|
Pegylated Lipids
|
DSPE-PEG-Azide (MW 2000) is an azide containing lipid that can be used to form micelles as nanoparticles for drug delivery . DSPE-PEG-Azide (MW 2000) is a click chemistry reagent, it contains an Azide group and can undergo copper-catalyzed azide-alkyne cycloaddition reaction (CuAAc) with molecules containing Alkyne groups. It can also undergo strain-promoted alkyne-azide cycloaddition (SPAAC) reactions with molecules containing DBCO or BCN groups.
|
- HY-W099547
-
|
|
Phospholipids
|
Dihexadecyl hydrogen phosphateIt is an organic compound belonging to phospholipids. It's often used as an emulsifier, which means it helps mix two substances together that don't usually mix well, such as oil and water. Dihexadecyl hydrogen phosphateIt has several applications in the food industry, especially in the production of processed foods where it improves texture and stability. Additionally, it has applications in the pharmaceutical industry where it can be used ain the generation of micelles, liposomes, and other types of artificial membranes.
|
Your information is safe with us. * Required Fields.
Inquiry Information
- Product Name:
- Cat. No.:
- Quantity:
- MCE Japan Authorized Agent: