1. Cell Cycle/DNA Damage Apoptosis Anti-infection Metabolic Enzyme/Protease NF-κB Immunology/Inflammation
  2. Topoisomerase Apoptosis Antibiotic Bacterial Mitochondrial Metabolism Reactive Oxygen Species
  3. Ciprofloxacin hydrochloride monohydrate

Ciprofloxacin hydrochloride monohydrate  (Synonyms: Bay-09867 hydrochloride monohydrate)

Cat. No.: HY-B0356B Purity: 99.90%
SDS COA Handling Instructions

Ciprofloxacin (Bay-09867) hydrochloride monohydrate is a potent, orally active topoisomerase IV inhibitor. Ciprofloxacin hydrochloride monohydrate induces mitochondrial DNA and nuclear DNA damage and lead to mitochondrial dysfunction, ROS production. Ciprofloxacin hydrochloride monohydrate has anti-proliferative activity and induces apoptosis. Ciprofloxacin hydrochloride monohydrate is a fluoroquinolone antibiotic, exhibiting potent antibacterial activity.

For research use only. We do not sell to patients.

Ciprofloxacin hydrochloride monohydrate Chemical Structure

Ciprofloxacin hydrochloride monohydrate Chemical Structure

CAS No. : 86393-32-0

Size Price Stock Quantity
500 mg USD 50 In-stock
1 g USD 72 In-stock
5 g USD 108 In-stock
10 g   Get quote  
50 g   Get quote  

* Please select Quantity before adding items.

This product is a controlled substance and not for sale in your territory.

Customer Review

Based on 29 publication(s) in Google Scholar

Top Publications Citing Use of Products
  • Biological Activity

  • Purity & Documentation

  • References

  • Customer Review

Description

Ciprofloxacin (Bay-09867) hydrochloride monohydrate is a potent, orally active topoisomerase IV inhibitor. Ciprofloxacin hydrochloride monohydrate induces mitochondrial DNA and nuclear DNA damage and lead to mitochondrial dysfunction, ROS production. Ciprofloxacin hydrochloride monohydrate has anti-proliferative activity and induces apoptosis. Ciprofloxacin hydrochloride monohydrate is a fluoroquinolone antibiotic, exhibiting potent antibacterial activity[1][2][3][4].

IC50 & Target

Quinolone

 

In Vitro

Ciprofloxacin (Bay-09867) hydrochloride monohydrate (5-50 μg/mL; 0-24 h; tendon cells) inhibits cell proliferation and causes cell cycle arrest at the G2/M phase[1].
Ciprofloxacin (Bay-09867) hydrochloride monohydrate shows potent activity against Y. pestis and B. anthracis with MIC90 of 0.03 μg/mL and 0.12 μg/mL, respectively[2].

MedChemExpress (MCE) has not independently confirmed the accuracy of these methods. They are for reference only.

Cell Viability Assay[1]

Cell Line: Tendon cells
Concentration: 5, 10, 20 and 50 μg/mL
Incubation Time: 24 hours
Result: Decreased the cellularity of tendon cells.

Cell Cycle Analysis[1]

Cell Line: Tendon cells
Concentration: 50 μg/mL
Incubation Time: 24 hours
Result: Arrested cell cycle at the G2/M phase and inhibited cell division in tendon cells.

Western Blot Analysis[1]

Cell Line: Tendon cells
Concentration: 50 μg/mL
Incubation Time: 0, 6, 12, 17 and 24 hours
Result: Down-regulated the expression of CDK-1 and cyclin B protein and mRNA. Up-regulated the expression of PLK-1 protein.
In Vivo

Ciprofloxacin (Bay-09867) hydrochloride monohydrate (30 mg/kg; i.p.; for 24 hours; BALB/c mice) has protection against Y. pestis in murine model of pneumonic plague[3].
Ciprofloxacin (Bay-09867) hydrochloride monohydrate (100 mg/kg; i.g.; daily, for 4 weeks; C57BL/6J mice) accelerates aortic root enlargement and increases the incidence of aortic dissection and rupture by decreases LOX level and increases MMP levels and activity in the aortic wall[4].
Ciprofloxacin (Bay-09867) hydrochloride monohydrate (100 mg/kg; i.g.; daily, for 4 weeks; C57BL/6J mice) induces DNA damage and release of DNA to the cytosol, mitochondrial dysfunction, and activation of cytosolic DNA sensor signaling. Ciprofloxacin lactate increases apoptosis and necroptosis in the aortic wall[4].

MedChemExpress (MCE) has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Model: BALB/c mice[3]
Dosage: 30 mg/kg
Administration: Intraperitoneal injection; for 24 hours
Result: Reduced the lung bacterial load in murine model of pneumonic plague.
Animal Model: C57BL/6J mice[4]
Dosage: 100 mg/kg
Administration: Oral gavage; daily, for 4 weeks
Result: Had aortic destruction that was accompanied by decreased LOX expression and increased MMP expression and activity.
Animal Model: C57BL/6J mice[4]
Dosage: 100 mg/kg
Administration: Oral gavage; daily, for 4 weeks
Result: Caused mitochondrial DNA and nuclear DNA damage, leading to mitochondrial dysfunction and ROS production. Increased apoptosis and necroptosis in the aortic wall.
Clinical Trial
Molecular Weight

385.82

Formula

C17H21ClFN3O4

CAS No.
Appearance

Solid

Color

White to off-white

SMILES

[H]O[H].[H]Cl.O=C(C1=CN(C2CC2)C3=C(C=C(F)C(N4CCNCC4)=C3)C1=O)O

Shipping

Room temperature in continental US; may vary elsewhere.

Storage

4°C, sealed storage, away from moisture

*In solvent : -80°C, 6 months; -20°C, 1 month (sealed storage, away from moisture)

Solvent & Solubility
In Vitro: 

DMSO : 5 mg/mL (12.96 mM; ultrasonic and warming and heat to 60°C; Hygroscopic DMSO has a significant impact on the solubility of product, please use newly opened DMSO)

Preparing
Stock Solutions
Concentration Solvent Mass 1 mg 5 mg 10 mg
1 mM 2.5919 mL 12.9594 mL 25.9188 mL
5 mM 0.5184 mL 2.5919 mL 5.1838 mL
View the Complete Stock Solution Preparation Table

* Please refer to the solubility information to select the appropriate solvent. Once prepared, please aliquot and store the solution to prevent product inactivation from repeated freeze-thaw cycles.
Storage method and period of stock solution: -80°C, 6 months; -20°C, 1 month (sealed storage, away from moisture). When stored at -80°C, please use it within 6 months. When stored at -20°C, please use it within 1 month.

  • Molarity Calculator

  • Dilution Calculator

Mass (g) = Concentration (mol/L) × Volume (L) × Molecular Weight (g/mol)

Mass
=
Concentration
×
Volume
×
Molecular Weight *

Concentration (start) × Volume (start) = Concentration (final) × Volume (final)

This equation is commonly abbreviated as: C1V1 = C2V2

Concentration (start)

C1

×
Volume (start)

V1

=
Concentration (final)

C2

×
Volume (final)

V2

In Vivo:

Select the appropriate dissolution method based on your experimental animal and administration route.

For the following dissolution methods, please ensure to first prepare a clear stock solution using an In Vitro approach and then sequentially add co-solvents:
To ensure reliable experimental results, the clarified stock solution can be appropriately stored based on storage conditions. As for the working solution for in vivo experiments, it is recommended to prepare freshly and use it on the same day.
The percentages shown for the solvents indicate their volumetric ratio in the final prepared solution. If precipitation or phase separation occurs during preparation, heat and/or sonication can be used to aid dissolution.

  • Protocol 1

    Add each solvent one by one:  10% DMSO    40% PEG300    5% Tween-80    45% Saline

    Solubility: ≥ 0.5 mg/mL (1.30 mM); Clear solution

    This protocol yields a clear solution of ≥ 0.5 mg/mL (saturation unknown).

    Taking 1 mL working solution as an example, add 100 μL DMSO stock solution (5.0 mg/mL) to 400 μL PEG300, and mix evenly; then add 50 μL Tween-80 and mix evenly; then add 450 μL Saline to adjust the volume to 1 mL.

    Preparation of Saline: Dissolve 0.9 g sodium chloride in ddH₂O and dilute to 100 mL to obtain a clear Saline solution.
  • Protocol 2

    Add each solvent one by one:  10% DMSO    90% (20% SBE-β-CD in Saline)

    Solubility: ≥ 0.5 mg/mL (1.30 mM); Clear solution

    This protocol yields a clear solution of ≥ 0.5 mg/mL (saturation unknown).

    Taking 1 mL working solution as an example, add 100 μL DMSO stock solution (5.0 mg/mL) to 900 μL 20% SBE-β-CD in Saline, and mix evenly.

    Preparation of 20% SBE-β-CD in Saline (4°C, storage for one week): 2 g SBE-β-CD powder is dissolved in 10 mL Saline, completely dissolve until clear.
In Vivo Dissolution Calculator
Please enter the basic information of animal experiments:

Dosage

mg/kg

Animal weight
(per animal)

g

Dosing volume
(per animal)

μL

Number of animals

Recommended: Prepare an additional quantity of animals to account for potential losses during experiments.
Please enter your animal formula composition:
%
DMSO +
+
%
Tween-80 +
%
Saline
Recommended: Keep the proportion of DMSO in working solution below 2% if your animal is weak.
The co-solvents required include: DMSO, . All of co-solvents are available by MedChemExpress (MCE). , Tween 80. All of co-solvents are available by MedChemExpress (MCE).
Calculation results:
Working solution concentration: mg/mL
Method for preparing stock solution: mg drug dissolved in μL  DMSO (Stock solution concentration: mg/mL).

*In solvent : -80°C, 6 months; -20°C, 1 month (sealed storage, away from moisture)

The concentration of the stock solution you require exceeds the measured solubility. The following solution is for reference only. If necessary, please contact MedChemExpress (MCE).
Method for preparing in vivo working solution for animal experiments: Take μL DMSO stock solution, add μL . μL , mix evenly, next add μL Tween 80, mix evenly, then add μL Saline.
 If the continuous dosing period exceeds half a month, please choose this protocol carefully.
Please ensure that the stock solution in the first step is dissolved to a clear state, and add co-solvents in sequence. You can use ultrasonic heating (ultrasonic cleaner, recommended frequency 20-40 kHz), vortexing, etc. to assist dissolution.
Purity & Documentation

Purity: 99.90%

References

Complete Stock Solution Preparation Table

* Please refer to the solubility information to select the appropriate solvent. Once prepared, please aliquot and store the solution to prevent product inactivation from repeated freeze-thaw cycles.
Storage method and period of stock solution: -80°C, 6 months; -20°C, 1 month (sealed storage, away from moisture). When stored at -80°C, please use it within 6 months. When stored at -20°C, please use it within 1 month.

Optional Solvent Concentration Solvent Mass 1 mg 5 mg 10 mg 25 mg
DMSO 1 mM 2.5919 mL 12.9594 mL 25.9188 mL 64.7971 mL
5 mM 0.5184 mL 2.5919 mL 5.1838 mL 12.9594 mL
10 mM 0.2592 mL 1.2959 mL 2.5919 mL 6.4797 mL
  • No file chosen (Maximum size is: 1024 Kb)
  • If you have published this work, please enter the PubMed ID.
  • Your name will appear on the site.
Help & FAQs
  • Do most proteins show cross-species activity?

    Species cross-reactivity must be investigated individually for each product. Many human cytokines will produce a nice response in mouse cell lines, and many mouse proteins will show activity on human cells. Other proteins may have a lower specific activity when used in the opposite species.

Your Recently Viewed Products:

Inquiry Online

Your information is safe with us. * Required Fields.

Product Name

 

Salutation

Applicant Name *

 

Email Address *

Phone Number *

 

Organization Name *

Department *

 

Requested quantity *

Country or Region *

     

Remarks

Bulk Inquiry

Inquiry Information

Product Name:
Ciprofloxacin hydrochloride monohydrate
Cat. No.:
HY-B0356B
Quantity:
MCE Japan Authorized Agent: