1. Metabolic Enzyme/Protease Vitamin D Related/Nuclear Receptor Autophagy
  2. RAR/RXR Autophagy
  3. CD437

CD437 is a selective Retinoic Acid Receptor γ (RARγ) agonist.

For research use only. We do not sell to patients.

CD437 Chemical Structure

CD437 Chemical Structure

CAS No. : 125316-60-1

Size Price Stock Quantity
Free Sample (0.1 - 0.5 mg)   Apply Now  
Solid + Solvent (Highly Recommended)
10 mM * 1 mL in DMSO
ready for reconstitution
USD 77 In-stock
Solution
10 mM * 1 mL in DMSO USD 77 In-stock
Solid
5 mg USD 70 In-stock
10 mg USD 110 In-stock
25 mg USD 230 In-stock
50 mg USD 380 In-stock
100 mg USD 620 In-stock
200 mg   Get quote  
500 mg   Get quote  

* Please select Quantity before adding items.

This product is a controlled substance and not for sale in your territory.

Customer Review

Based on 3 publication(s) in Google Scholar

Other Forms of CD437:

Top Publications Citing Use of Products

View All RAR/RXR Isoform Specific Products:

  • Biological Activity

  • Protocol

  • Purity & Documentation

  • References

  • Customer Review

Description

CD437 is a selective Retinoic Acid Receptor γ (RARγ) agonist.

IC50 & Target

Retinoic Acid Receptor γ (RARγ)[1]

In Vitro

CD437 is a selective RARγ agonist. Growth inhibition by CD437 in these lung cancer cell lines is apparent after 2 days of treatment with 10 μM CD437. Dose-response experiments demonstrate that CD437 reduces the numbers of H460, SK-MES-1, A549, and H292 cells with 50% inhibitory values of approximately 0.5, 0.4, 3, and 0.85 μM, respectively[1].
Treatment for 72 h with CD437 causes a strong dose-dependent growth inhibition in all melanoma cell lines. At a concentration of 5 μM CD437, only about 5 to 25% of the cells remain viable after 3 d. The concentrations of CD437 required for 50% growth inhibition (IC50) range from 10 μM for MeWo to 0.1 μM for SK-Mel-23 showing the highest sensitivity[2].

MedChemExpress (MCE) has not independently confirmed the accuracy of these methods. They are for reference only.

In Vivo

Tumors in CD437-treated mice stop growing, an effect that becomes already statistically significant (P<0.01) at day 13, 3 d after first administration of CD437, and is maintained for more than 3 wk after discontinuation of treatment. Further histologic analysis demonstrates marked c-fos mRNA levels at the tumor-stroma edge in CD437-treated tumors[2].

MedChemExpress (MCE) has not independently confirmed the accuracy of these methods. They are for reference only.

Molecular Weight

398.49

Formula

C27H26O3

CAS No.
Appearance

Solid

Color

Light yellow to yellow

SMILES

O=C(C1=CC=C2C=C(C3=CC=C(O)C(C4(C5)CC6CC5CC(C6)C4)=C3)C=CC2=C1)O

Shipping

Room temperature in continental US; may vary elsewhere.

Storage

4°C, protect from light

*In solvent : -80°C, 2 years; -20°C, 1 year (protect from light)

Solvent & Solubility
In Vitro: 

DMSO : 150 mg/mL (376.42 mM; Need ultrasonic and warming; Hygroscopic DMSO has a significant impact on the solubility of product, please use newly opened DMSO)

Preparing
Stock Solutions
Concentration Solvent Mass 1 mg 5 mg 10 mg
1 mM 2.5095 mL 12.5474 mL 25.0947 mL
5 mM 0.5019 mL 2.5095 mL 5.0189 mL
View the Complete Stock Solution Preparation Table

* Please refer to the solubility information to select the appropriate solvent. Once prepared, please aliquot and store the solution to prevent product inactivation from repeated freeze-thaw cycles.
Storage method and period of stock solution: -80°C, 2 years; -20°C, 1 year (protect from light). When stored at -80°C, please use it within 2 years. When stored at -20°C, please use it within 1 year.

  • Molarity Calculator

  • Dilution Calculator

Mass (g) = Concentration (mol/L) × Volume (L) × Molecular Weight (g/mol)

Mass
=
Concentration
×
Volume
×
Molecular Weight *

Concentration (start) × Volume (start) = Concentration (final) × Volume (final)

This equation is commonly abbreviated as: C1V1 = C2V2

Concentration (start)

C1

×
Volume (start)

V1

=
Concentration (final)

C2

×
Volume (final)

V2

In Vivo:

Select the appropriate dissolution method based on your experimental animal and administration route.

For the following dissolution methods, please ensure to first prepare a clear stock solution using an In Vitro approach and then sequentially add co-solvents:
To ensure reliable experimental results, the clarified stock solution can be appropriately stored based on storage conditions. As for the working solution for in vivo experiments, it is recommended to prepare freshly and use it on the same day.
The percentages shown for the solvents indicate their volumetric ratio in the final prepared solution. If precipitation or phase separation occurs during preparation, heat and/or sonication can be used to aid dissolution.

  • Protocol 1

    Add each solvent one by one:  10% DMSO    40% PEG300    5% Tween-80    45% Saline

    Solubility: ≥ 2.5 mg/mL (6.27 mM); Clear solution

    This protocol yields a clear solution of ≥ 2.5 mg/mL (saturation unknown).

    Taking 1 mL working solution as an example, add 100 μL DMSO stock solution (25.0 mg/mL) to 400 μL PEG300, and mix evenly; then add 50 μL Tween-80 and mix evenly; then add 450 μL Saline to adjust the volume to 1 mL.

    Preparation of Saline: Dissolve 0.9 g sodium chloride in ddH₂O and dilute to 100 mL to obtain a clear Saline solution.
  • Protocol 2

    Add each solvent one by one:  10% DMSO    90% (20% SBE-β-CD in Saline)

    Solubility: 2.5 mg/mL (6.27 mM); Suspended solution; Need ultrasonic

    This protocol yields a suspended solution of 2.5 mg/mL. Suspended solution can be used for oral and intraperitoneal injection.

    Taking 1 mL working solution as an example, add 100 μL DMSO stock solution (25.0 mg/mL) to 900 μL 20% SBE-β-CD in Saline, and mix evenly.

    Preparation of 20% SBE-β-CD in Saline (4°C, storage for one week): 2 g SBE-β-CD powder is dissolved in 10 mL Saline, completely dissolve until clear.
In Vivo Dissolution Calculator
Please enter the basic information of animal experiments:

Dosage

mg/kg

Animal weight
(per animal)

g

Dosing volume
(per animal)

μL

Number of animals

Recommended: Prepare an additional quantity of animals to account for potential losses during experiments.
Please enter your animal formula composition:
%
DMSO +
+
%
Tween-80 +
%
Saline
Recommended: Keep the proportion of DMSO in working solution below 2% if your animal is weak.
The co-solvents required include: DMSO, . All of co-solvents are available by MedChemExpress (MCE). , Tween 80. All of co-solvents are available by MedChemExpress (MCE).
Calculation results:
Working solution concentration: mg/mL
Method for preparing stock solution: mg drug dissolved in μL  DMSO (Stock solution concentration: mg/mL).

*In solvent : -80°C, 2 years; -20°C, 1 year (protect from light)

The concentration of the stock solution you require exceeds the measured solubility. The following solution is for reference only. If necessary, please contact MedChemExpress (MCE).
Method for preparing in vivo working solution for animal experiments: Take μL DMSO stock solution, add μL . μL , mix evenly, next add μL Tween 80, mix evenly, then add μL Saline.
 If the continuous dosing period exceeds half a month, please choose this protocol carefully.
Please ensure that the stock solution in the first step is dissolved to a clear state, and add co-solvents in sequence. You can use ultrasonic heating (ultrasonic cleaner, recommended frequency 20-40 kHz), vortexing, etc. to assist dissolution.
Purity & Documentation
References
Cell Assay
[1]

For morphological analysis, cells are treated with 10 μM CD437, trypsinized, washed with phosphate-buffered saline (PBS), fixed with 3.7% paraformaldehyde, and stained with 50 μg of 4,6-diamidino-2-phenylindole (DAPI) per mL containing 100 μg of DNase-free RNase A per mL to visualize the nuclei. Stained cells are examined by fluorescence microscopy. For the terminal deoxynucleotidyl transferase (TdT) assay, cells are treated with or without 10 μM CD437. After treatment, cells are trypsinized, washed with PBS, fixed in 1% formaldehyde in PBS, washed with PBS, resuspended in 70% ice-cold ethanol, and immediately stored at -20°C overnight. Cells are then labeled with biotin-16-dUTP by terminal transferase and stained with avidin-FITC (fluorescein isothiocyanate). The labeled cells are analyzed with a flow cytometer[1].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Administration
[2]

Male Swiss-nu/nu mice weighing 20 to 25 g are used in this study. Mice are kept under sterile conditions at 24 to 26°C room temperature, 50% relative humidity, and 12 h light-dark rhythm in laminar flow shelves and are supplied with autoclaved food and bedding. For treatment of melanoma xenografts, previously established MeWo melanoma tumors of 1 to 2 mm in diameter are implanted into the right flank of animals. After tumor growth for 10 d, groups of mice (n=8) are either treated with saline p.o. or are injected intratumorally for 3 wk or are fed with various concentrations of CD437 (10 mg/kg/body weight and 30 mg/kg/body weight). In addition, tumors of a fifth group are injected with CD437 (10 mg/kg/body weight) each day. Mice are visited daily and growing tumors are measured twice weekly with a caliperlike instrument[2].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

References

Complete Stock Solution Preparation Table

* Please refer to the solubility information to select the appropriate solvent. Once prepared, please aliquot and store the solution to prevent product inactivation from repeated freeze-thaw cycles.
Storage method and period of stock solution: -80°C, 2 years; -20°C, 1 year (protect from light). When stored at -80°C, please use it within 2 years. When stored at -20°C, please use it within 1 year.

Optional Solvent Concentration Solvent Mass 1 mg 5 mg 10 mg 25 mg
DMSO 1 mM 2.5095 mL 12.5474 mL 25.0947 mL 62.7368 mL
5 mM 0.5019 mL 2.5095 mL 5.0189 mL 12.5474 mL
10 mM 0.2509 mL 1.2547 mL 2.5095 mL 6.2737 mL
15 mM 0.1673 mL 0.8365 mL 1.6730 mL 4.1825 mL
20 mM 0.1255 mL 0.6274 mL 1.2547 mL 3.1368 mL
25 mM 0.1004 mL 0.5019 mL 1.0038 mL 2.5095 mL
30 mM 0.0836 mL 0.4182 mL 0.8365 mL 2.0912 mL
40 mM 0.0627 mL 0.3137 mL 0.6274 mL 1.5684 mL
50 mM 0.0502 mL 0.2509 mL 0.5019 mL 1.2547 mL
60 mM 0.0418 mL 0.2091 mL 0.4182 mL 1.0456 mL
80 mM 0.0314 mL 0.1568 mL 0.3137 mL 0.7842 mL
100 mM 0.0251 mL 0.1255 mL 0.2509 mL 0.6274 mL
  • No file chosen (Maximum size is: 1024 Kb)
  • If you have published this work, please enter the PubMed ID.
  • Your name will appear on the site.
Help & FAQs
  • Do most proteins show cross-species activity?

    Species cross-reactivity must be investigated individually for each product. Many human cytokines will produce a nice response in mouse cell lines, and many mouse proteins will show activity on human cells. Other proteins may have a lower specific activity when used in the opposite species.

Your Recently Viewed Products:

Inquiry Online

Your information is safe with us. * Required Fields.

Product Name

 

Salutation

Applicant Name *

 

Email Address *

Phone Number *

 

Organization Name *

Department *

 

Requested quantity *

Country or Region *

     

Remarks

Bulk Inquiry

Inquiry Information

Product Name:
CD437
Cat. No.:
HY-100532
Quantity:
MCE Japan Authorized Agent: