Search Result
Results for "
Radionuclide-Drug Conjugates (RDCs)
" in MedChemExpress (MCE) Product Catalog:
Cat. No. |
Product Name |
Target |
Research Areas |
Chemical Structure |
-
- HY-P2218
-
|
Radionuclide-Drug Conjugates (RDCs)
CXCR
|
Cancer
|
Anditixafortide (Pentixather) is an endoradiotherapeutic vector. Anditixafortide is a CXCR4-targeting peptide derivative . Anditixafortide can be used for the synthesis/research of Radionuclide-Drug Conjugates (RDCs).
|
-
-
- HY-106033
-
DOTATOC; SDZ-SMT 487; SMT 487
|
Radionuclide-Drug Conjugates (RDCs)
|
Cancer
|
Edotreotide is a somatostatin analogue. Edotreotide bound to various radionuclides, has the potential for the research and diagnosis of certain types of cancer . Edotreotide can be used for the synthesis/research of Radionuclide-Drug Conjugates (RDCs).
|
-
-
- HY-106244A
-
|
Radionuclide-Drug Conjugates (RDCs)
|
Cancer
|
DOTATATE acetate is a DOTA-conjugated peptide. DOTATATE acetate can be labelled with radionuclides for positron emission tomography (PET) imaging and peptide receptor radionuclide research (PRRT) . DOTATATE (acetate) can be used for the synthesis/research of Radionuclide-Drug Conjugates (RDCs).
|
-
-
- HY-106244
-
|
Radionuclide-Drug Conjugates (RDCs)
|
Cancer
|
DOTATATE is a DOTA-conjugated peptide. DOTATATE can be labelled with radionuclides for positron emission tomography (PET) imaging and peptide receptor radionuclide research (PRRT) . DOTATATE can be used for the synthesis/research of Radionuclide-Drug Conjugates (RDCs).
|
-
-
- HY-P10232
-
HYNIC-Tyr3-octreotide
|
Radionuclide-Drug Conjugates (RDCs)
|
Cancer
|
Hynic-toc (HYNIC-Tyr3-octreotide), a octreotide derivative, can be conjugated with radioactive element for tumor imaging . Hynic-toc can be used for the synthesis/research of Radionuclide-Drug Conjugates (RDCs).
|
-
-
- HY-P10758
-
-
-
- HY-P10292
-
-
-
- HY-P5053
-
|
Radionuclide-Drug Conjugates (RDCs)
Integrin
|
Cancer
|
Galacto-RGD is an RGD analogue that can be coupled with the radioactive isotope 18F and used as an integrin α?β? selective tracer . Galacto-RGD can be used for the synthesis/research of Radionuclide-Drug Conjugates (RDCs).
|
-
-
- HY-P10012
-
GYK-DTPA
|
Biochemical Assay Reagents
Radionuclide-Drug Conjugates (RDCs)
|
Cancer
|
Pendetide is a chelating agent, can be conjugated with Indium (111In) Capromab for further diagnostic use. Capromab pendetide is a FDA-approved imaging agent for the detection of soft tissue metastases in prostate carcinoma . Pendetide can be used for the synthesis/research of Radionuclide-Drug Conjugates (RDCs).
|
-
-
- HY-P10273
-
-
-
- HY-153549
-
|
Radionuclide-Drug Conjugates (RDCs)
CXCR
|
Others
|
Pentixafor is a peptide that targets CXCR4. Pentixafor is capable of being labelled with 68Gallium ( 68Ga) for positron emission tomography (PET) imaging . Pentixafor can be used for the synthesis/research of Radionuclide-Drug Conjugates (RDCs).
|
-
-
- HY-P10273A
-
|
Radionuclide-Drug Conjugates (RDCs)
Biochemical Assay Reagents
|
Cancer
|
DOTA-Octreotide TFA is composed of chelator DOTA and Octreotide (HY-P0036). DOTA-Octreotide TFA is used for research of cancer through combination with radioactive elements. DOTA-Octreotide TFA can be used for the synthesis/research of Radionuclide-Drug Conjugates (RDCs) .
|
-
-
- HY-153550
-
|
Radionuclide-Drug Conjugates (RDCs)
PSMA
|
Others
|
PSMA-1007 is a prostate-specific membrane antigen (PSMA) ligand. 18F-labeled PSMA-1007 can be used as a PET tracer for prostate cancer imaging . PSMA-1007 can be used for the synthesis/research of Radionuclide-Drug Conjugates (RDCs).
|
-
-
- HY-P10741
-
-
-
- HY-P10239
-
|
Somatostatin Receptor
Radionuclide-Drug Conjugates (RDCs)
|
Cancer
|
Tyr3-Octreotate is a somatostatin analog. Tyr3-Octreotate exhibits high uptake into tumor, that is capable to be labeled with radioactive metal and thus exhibits antitumor efficacy. Tyr3-Octreotate can be used for the synthesis/research of Radionuclide-Drug Conjugates (RDCs) .
|
-
-
- HY-P2112
-
DOTA-Nal3-octreotide
|
Radionuclide-Drug Conjugates (RDCs)
Somatostatin Receptor
|
Others
|
DOTA-NOC (DOTA-Nal3-octreotide) is a high-affinity ligand of somatostatin receptor subtypes 2, 3 and 5. DOTA-NOC can be used for labeling with various radiometals, and development of radiopeptide imaging . DOTA-NOC can be used for the synthesis/research of Radionuclide-Drug Conjugates (RDCs).
|
-
-
- HY-P10239A
-
|
Radionuclide-Drug Conjugates (RDCs)
|
Cancer
|
Tyr3-Octreotate acetate is a somatostatin analog. Tyr3-Octreotate acetate exhibits high uptake into tumor, that is capable to be labeled with radioactive metal and thus exhibits antitumor efficacy. Tyr3-Octreotate acetate can be used for the synthesis/research of Radionuclide-Drug Conjugates (RDCs) .
|
-
-
- HY-P10220
-
|
Radionuclide-Drug Conjugates (RDCs)
Biochemical Assay Reagents
|
Others
|
NOTA-COG1410 forms triggering receptor expressed on myeloid cells 2 (TREM2) targeting radioligand for discovery and diagnosis of digestive system tumors through positron emission tomography/computed tomography . NOTA-COG1410 can be used for the synthesis/research of Radionuclide-Drug Conjugates (RDCs).
|
-
-
- HY-158266
-
LNC1003
|
Radionuclide-Drug Conjugates (RDCs)
PSMA
|
Cancer
|
DOTA-PSMA-EB-01 (Compound LNC1003) is a specific inhibitor of PSMA (IC50= 10.77 nM).DOTA-PSMA-EB-01 enhances the uptake and retention time of 177Lu in tumors . DOTA-PSMA-EB-01 can be used for the synthesis/research of Radionuclide-Drug Conjugates (RDCs).
|
-
-
- HY-P10307
-
|
Radionuclide-Drug Conjugates (RDCs)
Bacterial
|
Infection
|
DOTA-ubiquicidin (29-41), an antimicrobial peptide fragment derivative, can be used for synthesis of [ 68Ga]Ga-DOTA-Ubiquicidin29-41 and then used for imaging of infectious processes using PET/CT . DOTA-ubiquicidin (29–41) can be used for the synthesis/research of Radionuclide-Drug Conjugates (RDCs).
|
-
-
- HY-P5128
-
Satoreotide tetraxetan
|
Radionuclide-Drug Conjugates (RDCs)
Somatostatin Receptor
|
Cancer
|
DOTA-JR11 is a somatostatin receptor 2 (SSTR2)antagonist. DOTA-JR11 can be labeled by 68Ga, used for paired imaging in neuroendocrine tumors (NETs) research . DOTA-JR11 can be used for the synthesis/research of Radionuclide-Drug Conjugates (RDCs).
|
-
-
- HY-P5362
-
|
Radionuclide-Drug Conjugates (RDCs)
Somatostatin Receptor
|
Cancer
|
NODAGA-LM3 can be labeled by 68Ga for PET imaging. 68Ga-NODAGA-LM3 is a SSTR2 antagonist, and can be used for imaging of SSTR positive paragangliomas. NODAGA-LM3 can be labeled with [68Ga] for the synthesis/research of Radionuclide-Drug Conjugates (RDCs) .
|
-
-
- HY-114133
-
|
Radionuclide-Drug Conjugates (RDCs)
Somatostatin Receptor
|
Cancer
|
Depreotide is a nove tumor tarcer, can be complexed with technetium-99m ( 99mTc-depreotide) for optimal imaging properties. 99mTc-depreotide somatostain receptor imaging has been playing an important role in medical diagnosis research . Depreotide can be used for the synthesis/research of Radionuclide-Drug Conjugates (RDCs).
|
-
-
- HY-164725
-
|
Radionuclide-Drug Conjugates (RDCs)
FAP
|
Cancer
|
FAPI-mFS is an irreversible fibroblast activation protein (FAP) inhibitor, that enhances the uptake and retention time in cancer cells through its covalent binding property for FAP. FAPI-mFS can be used for cancer imaging the therapy, when labeled with radioactive 68Ga or 177Lu . FAPI-mFS can be used for the synthesis/research of Radionuclide-Drug Conjugates (RDCs).
|
-
-
- HY-P5297
-
|
Radionuclide-Drug Conjugates (RDCs)
CXCR
|
Cancer
|
DOTA-CXCR4-L is a CXCR4 targeting peptide. DOTA-CXCR4-L can be used in the study of cancers, including glioblastoma and triple-negative breast cancer. NODAGA-LM3 can be labeled with [68Ga]/[177Lu] for the synthesis/research of Radionuclide-Drug Conjugates (RDCs) .
|
-
-
- HY-P10369
-
-
-
- HY-P5362A
-
|
Radionuclide-Drug Conjugates (RDCs)
Somatostatin Receptor
|
Cancer
|
NODAGA-LM3 TFA can be labeled by 68Ga for PET imaging. 68Ga-NODAGA-LM3 TFA is a SSTR2 antagonist, and can be used for imaging of SSTR positive paragangliomas. NODAGA-LM3 TFA can be labeled with [68Ga] for the synthesis/research of Radionuclide-Drug Conjugates (RDCs) .
|
-
-
- HY-159768A
-
|
Radionuclide-Drug Conjugates (RDCs)
|
Cancer
|
DOTAGA.Glu.(FAPi)2 is a precursor for radiopharmaceutical labeling, which can be combined with radionuclides to create radionuclide drug conjugates (RDCs). RDCs have the capability to specifically target biomolecules and can be used in medical imaging .
|
-
-
- HY-159767A
-
|
Radionuclide-Drug Conjugates (RDCs)
|
Cancer
|
(S)-DOTAGA.(SA.FAPi)2 is a precursor for radiopharmaceutical labeling, which can be combined with radionuclides to create radionuclide drug conjugates (RDCs). RDCs have the capability to specifically target biomolecules and can be used in medical imaging .
|
-
-
- HY-D2363
-
|
FAP
Radionuclide-Drug Conjugates (RDCs)
Prolyl Endopeptidase (PREP)
|
Cancer
|
DOTA.SA.FAPi TFA inhibits fibroblast activation protein (FAP) with an IC50 of 0.9 nM. DOTA.SA.FAPi TFA targets protease PREP with an IC50 of 5.4 μM. DOTA.SA.FAPi TFA can be used a PET tracer, when labeled with 68Ga, and used for research about cancer . DOTA.SA.FAPi (TFA) can be used for the synthesis/research of Radionuclide-Drug Conjugates (RDCs).
|
-
-
- HY-P10743
-
|
Radionuclide-Drug Conjugates (RDCs)
PSMA
|
Cancer
|
BQ7876 is a probe targeting prostate-specific membrane antigen (PSMA) that contains a DOTA chelator. BQ7876, after being radiolabeled with radionuclide (177Lu), functions in both radionuclide imaging and tumor cell destruction by specifically binding to PSMA. BQ7876 shows potential for research in the field of metastatic castration-resistant prostate cancer (mCRPC) . BQ7876 can be used for the synthesis/research of Radionuclide-Drug Conjugates (RDCs).
|
-
-
- HY-164588
-
|
Radionuclide-Drug Conjugates (RDCs)
|
Cancer
|
NH2-PEG4-NODA-GA is a NODA-type metal chelator that can bind to radionuclides to prepare radionuclide drug conjugates (RDCs). RDCs have the ability to specifically target biomolecules and can be used in medical imaging or therapy.
|
-
-
- HY-P5018
-
|
Radionuclide-Drug Conjugates (RDCs)
Ser/Thr Protease
|
Cancer
|
NOTA-AE105 is an PET ligand of urokinase-type plasminogen activator receptor (uPAR), which can be radiolabeled by 64Cu and 68Ga. 68Ga-NOTA-AE105 and 64Cu-NOTA-AE105 shows high image contrast, resulting in clear tumor delineation . NOTA-AE105 can be used for the synthesis/research of Radionuclide-Drug Conjugates (RDCs).
|
-
-
- HY-P10444
-
|
Radionuclide-Drug Conjugates (RDCs)
CXCR
|
Cancer
|
DOTA Conjugated JM#21 derivative 7 (compound Ligand-7) is a derivative of CXCR4 targeting peptide conjugated with DOTA and can be used to produce radioligands. Radiolabeled DOTA Conjugated JM#21 derivative 7, i.e., 177Lu-DOTA, has excellent CXCR4 tumor targeting. In vitro biodistribution results of 177Lu-DOTA showed very low uptake in all non-targeted organs except kidney . DOTA Conjugated JM#21 derivative 7 can be used for the synthesis/research of Radionuclide-Drug Conjugates (RDCs).
|
-
-
- HY-159770A
-
|
Radionuclide-Drug Conjugates (RDCs)
|
Cancer
|
(S)-EB-FAPI-B2 (Compound II-11) is a precursor for radiopharmaceutical labeling, which can be combined with radionuclides to create radionuclide drug conjugates (RDCs). RDCs have the capability to specifically target biomolecules and can be used in medical imaging or therapy .
|
-
-
- HY-122939
-
|
Radionuclide-Drug Conjugates (RDCs)
|
Cancer
|
MAIPGG is a bifunctional chelator and an intermediate in the synthesis of radionuclide drug conjugates (RDCs). MAIPGG can be for the radiolabeling of a variety of monoclonal antibodies with 99mTc or 186Re, which then can be used for radioimmunodetection and radioimmunotherapy of cancer .
|
-
-
- HY-P5290
-
|
Radionuclide-Drug Conjugates (RDCs)
PSMA
|
Cancer
|
HYNIC-PSMA is a ligand for molecular imaging of tumors. Hynic-psma consists of two components: HYNIC (6-hydrazinonicotinamide) and PSMA (Prostate-Specific Membrane Antigen). HYNIC is a compound used to attach radioactive isotopes to targeted molecules, such as 188Re-HYNIC-PSMA. PSMA is a membrane antigen that is specifically expressed on the surface of prostate cancer cells. HYNIC-PSMA can be used in prostate cancer research . HYNIC-PSMA can be used for the synthesis/research of Radionuclide-Drug Conjugates (RDCs).
|
-
-
- HY-132989
-
-
-
- HY-164569
-
|
Radionuclide-Drug Conjugates (RDCs)
|
Cancer
|
NH2 DOTA-GA is a DOTA-based metal chelator that can be used to prepare radionuclide drug conjugates (RDCs) whose carboxylic acid groups can complex metal ions. For example, NH2 DOTA-GA complexes Gd(III) ions.
|
-
-
- HY-P10781
-
|
Radionuclide-Drug Conjugates (RDCs)
PSMA
|
Cancer
|
PSMA-D5 has a binding affinity for PSMA with Ki of 0.21 nM and can be used for PSMA tracing after radiolabeling. PSMA-D5 ([ 68Ga]-labeled) contains a DOTA chelator, allowing convenient labeling with therapeutic radionuclides such as 177Lu and 225Ac. PSMA-D5 ([ 68Ga]-labeled) shows excellent pharmacokinetic properties, exhibiting remarkable tumor uptake in 22Rv1 tumors . PSMA-D5 can be used for the synthesis/research of Radionuclide-Drug Conjugates (RDCs).
|
-
-
- HY-P10761
-
|
Radionuclide-Drug Conjugates (RDCs)
Carbonic Anhydrase
|
Cancer
|
DPI-4452 is a CAIX-targeting cyclic peptide with a DOTA cage, and can be chelated with radionuclide for CAIX-expressing tumor PET-CT imaging and study. DPI-4452 specifically and selectively binds CAIX without interaction with an in vitro off-target receptor panel of 55 targets (IC50 for recombinant hCAIX: 130?nM). Radiolabeled DPI-4452 inhibits tumor growth in HT-29 and SK-RC-52 xenograft mouse models . DPI-4452 can be used for the synthesis/research of Radionuclide-Drug Conjugates (RDCs).
|
-
-
- HY-P5292
-
|
Radionuclide-Drug Conjugates (RDCs)
PSMA
|
Cancer
|
HYNIC-iPSMA is a ligand for molecular imaging of tumors. Hynic-ipsma consists of two components: HYNIC (6-hydrazinonicotinamide) and iPSMA (Inhibitor of Prostate-Specific Membrane Antigen). HYNIC is a compound used to attach radioactive isotopes to targeted molecules. iPSMA is a specific inhibitor used to inhibit prostate-specific membrane antigen (PSMA). 68GA-labeled iPSMA has been used to detect prostate cancer by PET imaging. The further 99mTc-EDDA/HYNIC-iPSMA has excellent specificity and sensitivity . HYNIC-iPSMA can be used for the synthesis/research of Radionuclide-Drug Conjugates (RDCs).
|
-
-
- HY-W755033
-
|
Radionuclide-Drug Conjugates (RDCs)
|
Cancer
|
NH2-PEG4-DOTA is a bifunctional, DOTA-type metal chelator. NH2-PEG4-DOTA can be conjugated with Dextran for quantitative analysis in the presence of a highly luminescent complex. NH2-PEG4-DOTA can also bind to radionuclides to prepare radionuclide drug conjugates (RDCs). RDCs have the ability to specifically target biomolecules and can be used in medical imaging or therapy.
|
-
-
- HY-P5292A
-
|
Radionuclide-Drug Conjugates (RDCs)
PSMA
|
Cancer
|
HYNIC-iPSMA TFA is a ligand for molecular imaging of tumors. Hynic-ipsma consists of two components: HYNIC (6-hydrazinonicotinamide) and iPSMA (Inhibitor of Prostate-Specific Membrane Antigen). HYNIC is a compound used to attach radioactive isotopes to targeted molecules. iPSMA is a specific inhibitor used to inhibit prostate-specific membrane antigen (PSMA). 68GA-labeled iPSMA has been used to detect prostate cancer by PET imaging. The further 99mTc-EDDA/HYNIC-iPSMA TFA has excellent specificity and sensitivity . HYNIC-iPSMA TFA can be used for the synthesis/research of Radionuclide-Drug Conjugates (RDCs).
|
-
-
- HY-P10744
-
|
Radionuclide-Drug Conjugates (RDCs)
PSMA
|
Cancer
|
BQ7859 is a probe targeting PSMA that contains a NOTA chelator and demonstrates excellent imaging performance. BQ7859 can be labeled with various radionuclides, such as 68Ga, 18F, 55Co, and 111In. In a mouse prostate cancer xenograft model, BQ7859 (labeled with 111In) efficiently accumulates in tumor regions in a PSMA-dependent manner and provides high-contrast tumor imaging. BQ7859 shows potential for research in prostate cancer imaging, particularly in positron emission tomography (PET) and single-photon emission computed tomography (SPECT) . BQ7859 can be used for the synthesis/research of Radionuclide-Drug Conjugates (RDCs).
|
-
-
- HY-P10446
-
|
Radionuclide-Drug Conjugates (RDCs)
Epigenetic Reader Domain
|
Cancer
|
TAT-PiET-PROTAC is a proteolysis-targeting chimera (PROTAC)-modified TAT-PiET (HY-P10445). TAT-PiET is a cell-penetrating peptide targeting the extra-terminal (ET) domain of BRD4. TAT-PiET-PROTAC can disrupt the interaction between the breast cancer oncogene BRD4/JMJD6 and inhibit the growth of breast cancer cells. TAT-PiET-PROTAC also resists the endocrine resistance of ERα-positive breast cancer cells and is a potential inhibitor of breast cancer . TAT-PiET-PROTAC can be used for the synthesis/research of Radionuclide-Drug Conjugates (RDCs).
|
-
-
- HY-P5126
-
|
Radionuclide-Drug Conjugates (RDCs)
Somatostatin Receptor
|
Cancer
|
DOTA-LM3 is a somatostatin receptor (SSTR) antagonist. LM3 refers to p-Cl-Phe- cyclo(D-Cys-Tyr-D-4-amino-Phe(carbamoyl)-Lys-Thr-Cys)D-Tyr- NH2, as well as a somatostatin antagonist. DOTA-LM3 is often isotopically labeled for tracing tumors in vivo, such as 177Lu-DOTA-LM3 and 68 Ga-DOTA-LM3. 68 Ga-DOTA-LM3 shows favorable biodistribution, high tumor uptake, good tumor retention, and few safety concerns. 177Lu-DOTA-LM3 can be used for research in DOTATOC-negative liver metastases, such as pancreatic NET and extensive tumor thrombosis . DOTA-LM3 can be used for the synthesis/research of Radionuclide-Drug Conjugates (RDCs).
|
-
-
- HY-P5126A
-
|
Radionuclide-Drug Conjugates (RDCs)
Somatostatin Receptor
|
Cancer
|
DOTA-LM3 TFA is a somatostatin receptor (SSTR) antagonist. LM3 refers to p-Cl-Phe- cyclo(D-Cys-Tyr-D-4-amino-Phe(carbamoyl)-Lys-Thr-Cys)D-Tyr- NH2, as well as a somatostatin antagonist. DOTA-LM3 TFA is often isotopically labeled for tracing tumors in vivo, such as 177Lu-DOTA-LM3 TFA and 68 Ga-DOTA-LM3 TFA. 68 Ga-DOTA-LM3 TFA shows favorable biodistribution, high tumor uptake, good tumor retention, and few safety concerns. 177Lu-DOTA-LM3 TFA can be used for research in DOTATOC-negative liver metastases, such as pancreatic NET and extensive tumor thrombosis . DOTA-LM3 (TFA) can be used for the synthesis/research of Radionuclide-Drug Conjugates (RDCs).
|
-
-
- HY-W087187
-
|
Radionuclide-Drug Conjugates (RDCs)
EGFR
|
Cancer
|
DOTAGA-anhydride is a DOTA-based metal chelator that can bind to radionuclides and is used to prepare radionuclide drug conjugates (RDCs). DOTAGA-anhydride can be used to label monoclonal antibodies (mAbs) such as trastuzumab (targeting HER2/neu receptor with an affinity of 5.5 nM) under mild conditions (PBS pH 7.4, 25 °C, 30 minutes) after chelation with indium-111. [111In-DOTAGA]-trastuzumab showed a tumor uptake of 65% ID/g in mice bearing breast cancer BT-474 xenografts 72 hours after injection, which is valuable for SPECT/CT imaging and biodistribution studies.
|
-
Cat. No. |
Product Name |
Target |
Research Area |
-
- HY-P2218
-
|
Radionuclide-Drug Conjugates (RDCs)
CXCR
|
Cancer
|
Anditixafortide (Pentixather) is an endoradiotherapeutic vector. Anditixafortide is a CXCR4-targeting peptide derivative . Anditixafortide can be used for the synthesis/research of Radionuclide-Drug Conjugates (RDCs).
|
-
- HY-106033
-
DOTATOC; SDZ-SMT 487; SMT 487
|
Radionuclide-Drug Conjugates (RDCs)
|
Cancer
|
Edotreotide is a somatostatin analogue. Edotreotide bound to various radionuclides, has the potential for the research and diagnosis of certain types of cancer . Edotreotide can be used for the synthesis/research of Radionuclide-Drug Conjugates (RDCs).
|
-
- HY-106244A
-
|
Radionuclide-Drug Conjugates (RDCs)
|
Cancer
|
DOTATATE acetate is a DOTA-conjugated peptide. DOTATATE acetate can be labelled with radionuclides for positron emission tomography (PET) imaging and peptide receptor radionuclide research (PRRT) . DOTATATE (acetate) can be used for the synthesis/research of Radionuclide-Drug Conjugates (RDCs).
|
-
- HY-106244
-
|
Radionuclide-Drug Conjugates (RDCs)
|
Cancer
|
DOTATATE is a DOTA-conjugated peptide. DOTATATE can be labelled with radionuclides for positron emission tomography (PET) imaging and peptide receptor radionuclide research (PRRT) . DOTATATE can be used for the synthesis/research of Radionuclide-Drug Conjugates (RDCs).
|
-
- HY-P10232
-
HYNIC-Tyr3-octreotide
|
Radionuclide-Drug Conjugates (RDCs)
|
Cancer
|
Hynic-toc (HYNIC-Tyr3-octreotide), a octreotide derivative, can be conjugated with radioactive element for tumor imaging . Hynic-toc can be used for the synthesis/research of Radionuclide-Drug Conjugates (RDCs).
|
-
- HY-P10758
-
-
- HY-P10292
-
-
- HY-P5053
-
|
Radionuclide-Drug Conjugates (RDCs)
Integrin
|
Cancer
|
Galacto-RGD is an RGD analogue that can be coupled with the radioactive isotope 18F and used as an integrin α?β? selective tracer . Galacto-RGD can be used for the synthesis/research of Radionuclide-Drug Conjugates (RDCs).
|
-
- HY-P10012
-
GYK-DTPA
|
Biochemical Assay Reagents
Radionuclide-Drug Conjugates (RDCs)
|
Cancer
|
Pendetide is a chelating agent, can be conjugated with Indium (111In) Capromab for further diagnostic use. Capromab pendetide is a FDA-approved imaging agent for the detection of soft tissue metastases in prostate carcinoma . Pendetide can be used for the synthesis/research of Radionuclide-Drug Conjugates (RDCs).
|
-
- HY-P10273
-
-
- HY-153549
-
|
Radionuclide-Drug Conjugates (RDCs)
CXCR
|
Others
|
Pentixafor is a peptide that targets CXCR4. Pentixafor is capable of being labelled with 68Gallium ( 68Ga) for positron emission tomography (PET) imaging . Pentixafor can be used for the synthesis/research of Radionuclide-Drug Conjugates (RDCs).
|
-
- HY-P10273A
-
|
Radionuclide-Drug Conjugates (RDCs)
Biochemical Assay Reagents
|
Cancer
|
DOTA-Octreotide TFA is composed of chelator DOTA and Octreotide (HY-P0036). DOTA-Octreotide TFA is used for research of cancer through combination with radioactive elements. DOTA-Octreotide TFA can be used for the synthesis/research of Radionuclide-Drug Conjugates (RDCs) .
|
-
- HY-153550
-
|
Radionuclide-Drug Conjugates (RDCs)
PSMA
|
Others
|
PSMA-1007 is a prostate-specific membrane antigen (PSMA) ligand. 18F-labeled PSMA-1007 can be used as a PET tracer for prostate cancer imaging . PSMA-1007 can be used for the synthesis/research of Radionuclide-Drug Conjugates (RDCs).
|
-
- HY-P10741
-
-
- HY-P10239
-
|
Somatostatin Receptor
Radionuclide-Drug Conjugates (RDCs)
|
Cancer
|
Tyr3-Octreotate is a somatostatin analog. Tyr3-Octreotate exhibits high uptake into tumor, that is capable to be labeled with radioactive metal and thus exhibits antitumor efficacy. Tyr3-Octreotate can be used for the synthesis/research of Radionuclide-Drug Conjugates (RDCs) .
|
-
- HY-P2112
-
DOTA-Nal3-octreotide
|
Radionuclide-Drug Conjugates (RDCs)
Somatostatin Receptor
|
Others
|
DOTA-NOC (DOTA-Nal3-octreotide) is a high-affinity ligand of somatostatin receptor subtypes 2, 3 and 5. DOTA-NOC can be used for labeling with various radiometals, and development of radiopeptide imaging . DOTA-NOC can be used for the synthesis/research of Radionuclide-Drug Conjugates (RDCs).
|
-
- HY-P10239A
-
|
Radionuclide-Drug Conjugates (RDCs)
|
Cancer
|
Tyr3-Octreotate acetate is a somatostatin analog. Tyr3-Octreotate acetate exhibits high uptake into tumor, that is capable to be labeled with radioactive metal and thus exhibits antitumor efficacy. Tyr3-Octreotate acetate can be used for the synthesis/research of Radionuclide-Drug Conjugates (RDCs) .
|
-
- HY-P10220
-
|
Radionuclide-Drug Conjugates (RDCs)
Biochemical Assay Reagents
|
Others
|
NOTA-COG1410 forms triggering receptor expressed on myeloid cells 2 (TREM2) targeting radioligand for discovery and diagnosis of digestive system tumors through positron emission tomography/computed tomography . NOTA-COG1410 can be used for the synthesis/research of Radionuclide-Drug Conjugates (RDCs).
|
-
- HY-158266
-
LNC1003
|
Radionuclide-Drug Conjugates (RDCs)
PSMA
|
Cancer
|
DOTA-PSMA-EB-01 (Compound LNC1003) is a specific inhibitor of PSMA (IC50= 10.77 nM).DOTA-PSMA-EB-01 enhances the uptake and retention time of 177Lu in tumors . DOTA-PSMA-EB-01 can be used for the synthesis/research of Radionuclide-Drug Conjugates (RDCs).
|
-
- HY-P10307
-
|
Radionuclide-Drug Conjugates (RDCs)
Bacterial
|
Infection
|
DOTA-ubiquicidin (29-41), an antimicrobial peptide fragment derivative, can be used for synthesis of [ 68Ga]Ga-DOTA-Ubiquicidin29-41 and then used for imaging of infectious processes using PET/CT . DOTA-ubiquicidin (29–41) can be used for the synthesis/research of Radionuclide-Drug Conjugates (RDCs).
|
-
- HY-P5128
-
Satoreotide tetraxetan
|
Radionuclide-Drug Conjugates (RDCs)
Somatostatin Receptor
|
Cancer
|
DOTA-JR11 is a somatostatin receptor 2 (SSTR2)antagonist. DOTA-JR11 can be labeled by 68Ga, used for paired imaging in neuroendocrine tumors (NETs) research . DOTA-JR11 can be used for the synthesis/research of Radionuclide-Drug Conjugates (RDCs).
|
-
- HY-P5362
-
|
Radionuclide-Drug Conjugates (RDCs)
Somatostatin Receptor
|
Cancer
|
NODAGA-LM3 can be labeled by 68Ga for PET imaging. 68Ga-NODAGA-LM3 is a SSTR2 antagonist, and can be used for imaging of SSTR positive paragangliomas. NODAGA-LM3 can be labeled with [68Ga] for the synthesis/research of Radionuclide-Drug Conjugates (RDCs) .
|
-
- HY-114133
-
|
Radionuclide-Drug Conjugates (RDCs)
Somatostatin Receptor
|
Cancer
|
Depreotide is a nove tumor tarcer, can be complexed with technetium-99m ( 99mTc-depreotide) for optimal imaging properties. 99mTc-depreotide somatostain receptor imaging has been playing an important role in medical diagnosis research . Depreotide can be used for the synthesis/research of Radionuclide-Drug Conjugates (RDCs).
|
-
- HY-164725
-
|
Radionuclide-Drug Conjugates (RDCs)
FAP
|
Cancer
|
FAPI-mFS is an irreversible fibroblast activation protein (FAP) inhibitor, that enhances the uptake and retention time in cancer cells through its covalent binding property for FAP. FAPI-mFS can be used for cancer imaging the therapy, when labeled with radioactive 68Ga or 177Lu . FAPI-mFS can be used for the synthesis/research of Radionuclide-Drug Conjugates (RDCs).
|
-
- HY-P5297
-
|
Radionuclide-Drug Conjugates (RDCs)
CXCR
|
Cancer
|
DOTA-CXCR4-L is a CXCR4 targeting peptide. DOTA-CXCR4-L can be used in the study of cancers, including glioblastoma and triple-negative breast cancer. NODAGA-LM3 can be labeled with [68Ga]/[177Lu] for the synthesis/research of Radionuclide-Drug Conjugates (RDCs) .
|
-
- HY-P10369
-
-
- HY-P5362A
-
|
Radionuclide-Drug Conjugates (RDCs)
Somatostatin Receptor
|
Cancer
|
NODAGA-LM3 TFA can be labeled by 68Ga for PET imaging. 68Ga-NODAGA-LM3 TFA is a SSTR2 antagonist, and can be used for imaging of SSTR positive paragangliomas. NODAGA-LM3 TFA can be labeled with [68Ga] for the synthesis/research of Radionuclide-Drug Conjugates (RDCs) .
|
-
- HY-D2363
-
|
FAP
Radionuclide-Drug Conjugates (RDCs)
Prolyl Endopeptidase (PREP)
|
Cancer
|
DOTA.SA.FAPi TFA inhibits fibroblast activation protein (FAP) with an IC50 of 0.9 nM. DOTA.SA.FAPi TFA targets protease PREP with an IC50 of 5.4 μM. DOTA.SA.FAPi TFA can be used a PET tracer, when labeled with 68Ga, and used for research about cancer . DOTA.SA.FAPi (TFA) can be used for the synthesis/research of Radionuclide-Drug Conjugates (RDCs).
|
-
- HY-P10743
-
|
Radionuclide-Drug Conjugates (RDCs)
PSMA
|
Cancer
|
BQ7876 is a probe targeting prostate-specific membrane antigen (PSMA) that contains a DOTA chelator. BQ7876, after being radiolabeled with radionuclide (177Lu), functions in both radionuclide imaging and tumor cell destruction by specifically binding to PSMA. BQ7876 shows potential for research in the field of metastatic castration-resistant prostate cancer (mCRPC) . BQ7876 can be used for the synthesis/research of Radionuclide-Drug Conjugates (RDCs).
|
-
- HY-P5018
-
|
Radionuclide-Drug Conjugates (RDCs)
Ser/Thr Protease
|
Cancer
|
NOTA-AE105 is an PET ligand of urokinase-type plasminogen activator receptor (uPAR), which can be radiolabeled by 64Cu and 68Ga. 68Ga-NOTA-AE105 and 64Cu-NOTA-AE105 shows high image contrast, resulting in clear tumor delineation . NOTA-AE105 can be used for the synthesis/research of Radionuclide-Drug Conjugates (RDCs).
|
-
- HY-P10444
-
|
Radionuclide-Drug Conjugates (RDCs)
CXCR
|
Cancer
|
DOTA Conjugated JM#21 derivative 7 (compound Ligand-7) is a derivative of CXCR4 targeting peptide conjugated with DOTA and can be used to produce radioligands. Radiolabeled DOTA Conjugated JM#21 derivative 7, i.e., 177Lu-DOTA, has excellent CXCR4 tumor targeting. In vitro biodistribution results of 177Lu-DOTA showed very low uptake in all non-targeted organs except kidney . DOTA Conjugated JM#21 derivative 7 can be used for the synthesis/research of Radionuclide-Drug Conjugates (RDCs).
|
-
- HY-P5290
-
|
Radionuclide-Drug Conjugates (RDCs)
PSMA
|
Cancer
|
HYNIC-PSMA is a ligand for molecular imaging of tumors. Hynic-psma consists of two components: HYNIC (6-hydrazinonicotinamide) and PSMA (Prostate-Specific Membrane Antigen). HYNIC is a compound used to attach radioactive isotopes to targeted molecules, such as 188Re-HYNIC-PSMA. PSMA is a membrane antigen that is specifically expressed on the surface of prostate cancer cells. HYNIC-PSMA can be used in prostate cancer research . HYNIC-PSMA can be used for the synthesis/research of Radionuclide-Drug Conjugates (RDCs).
|
-
- HY-P10781
-
|
Radionuclide-Drug Conjugates (RDCs)
PSMA
|
Cancer
|
PSMA-D5 has a binding affinity for PSMA with Ki of 0.21 nM and can be used for PSMA tracing after radiolabeling. PSMA-D5 ([ 68Ga]-labeled) contains a DOTA chelator, allowing convenient labeling with therapeutic radionuclides such as 177Lu and 225Ac. PSMA-D5 ([ 68Ga]-labeled) shows excellent pharmacokinetic properties, exhibiting remarkable tumor uptake in 22Rv1 tumors . PSMA-D5 can be used for the synthesis/research of Radionuclide-Drug Conjugates (RDCs).
|
-
- HY-P10761
-
|
Radionuclide-Drug Conjugates (RDCs)
Carbonic Anhydrase
|
Cancer
|
DPI-4452 is a CAIX-targeting cyclic peptide with a DOTA cage, and can be chelated with radionuclide for CAIX-expressing tumor PET-CT imaging and study. DPI-4452 specifically and selectively binds CAIX without interaction with an in vitro off-target receptor panel of 55 targets (IC50 for recombinant hCAIX: 130?nM). Radiolabeled DPI-4452 inhibits tumor growth in HT-29 and SK-RC-52 xenograft mouse models . DPI-4452 can be used for the synthesis/research of Radionuclide-Drug Conjugates (RDCs).
|
-
- HY-P5292
-
|
Radionuclide-Drug Conjugates (RDCs)
PSMA
|
Cancer
|
HYNIC-iPSMA is a ligand for molecular imaging of tumors. Hynic-ipsma consists of two components: HYNIC (6-hydrazinonicotinamide) and iPSMA (Inhibitor of Prostate-Specific Membrane Antigen). HYNIC is a compound used to attach radioactive isotopes to targeted molecules. iPSMA is a specific inhibitor used to inhibit prostate-specific membrane antigen (PSMA). 68GA-labeled iPSMA has been used to detect prostate cancer by PET imaging. The further 99mTc-EDDA/HYNIC-iPSMA has excellent specificity and sensitivity . HYNIC-iPSMA can be used for the synthesis/research of Radionuclide-Drug Conjugates (RDCs).
|
-
- HY-P5292A
-
|
Radionuclide-Drug Conjugates (RDCs)
PSMA
|
Cancer
|
HYNIC-iPSMA TFA is a ligand for molecular imaging of tumors. Hynic-ipsma consists of two components: HYNIC (6-hydrazinonicotinamide) and iPSMA (Inhibitor of Prostate-Specific Membrane Antigen). HYNIC is a compound used to attach radioactive isotopes to targeted molecules. iPSMA is a specific inhibitor used to inhibit prostate-specific membrane antigen (PSMA). 68GA-labeled iPSMA has been used to detect prostate cancer by PET imaging. The further 99mTc-EDDA/HYNIC-iPSMA TFA has excellent specificity and sensitivity . HYNIC-iPSMA TFA can be used for the synthesis/research of Radionuclide-Drug Conjugates (RDCs).
|
-
- HY-P10744
-
|
Radionuclide-Drug Conjugates (RDCs)
PSMA
|
Cancer
|
BQ7859 is a probe targeting PSMA that contains a NOTA chelator and demonstrates excellent imaging performance. BQ7859 can be labeled with various radionuclides, such as 68Ga, 18F, 55Co, and 111In. In a mouse prostate cancer xenograft model, BQ7859 (labeled with 111In) efficiently accumulates in tumor regions in a PSMA-dependent manner and provides high-contrast tumor imaging. BQ7859 shows potential for research in prostate cancer imaging, particularly in positron emission tomography (PET) and single-photon emission computed tomography (SPECT) . BQ7859 can be used for the synthesis/research of Radionuclide-Drug Conjugates (RDCs).
|
-
- HY-P10446
-
|
Radionuclide-Drug Conjugates (RDCs)
Epigenetic Reader Domain
|
Cancer
|
TAT-PiET-PROTAC is a proteolysis-targeting chimera (PROTAC)-modified TAT-PiET (HY-P10445). TAT-PiET is a cell-penetrating peptide targeting the extra-terminal (ET) domain of BRD4. TAT-PiET-PROTAC can disrupt the interaction between the breast cancer oncogene BRD4/JMJD6 and inhibit the growth of breast cancer cells. TAT-PiET-PROTAC also resists the endocrine resistance of ERα-positive breast cancer cells and is a potential inhibitor of breast cancer . TAT-PiET-PROTAC can be used for the synthesis/research of Radionuclide-Drug Conjugates (RDCs).
|
-
- HY-P5126
-
|
Radionuclide-Drug Conjugates (RDCs)
Somatostatin Receptor
|
Cancer
|
DOTA-LM3 is a somatostatin receptor (SSTR) antagonist. LM3 refers to p-Cl-Phe- cyclo(D-Cys-Tyr-D-4-amino-Phe(carbamoyl)-Lys-Thr-Cys)D-Tyr- NH2, as well as a somatostatin antagonist. DOTA-LM3 is often isotopically labeled for tracing tumors in vivo, such as 177Lu-DOTA-LM3 and 68 Ga-DOTA-LM3. 68 Ga-DOTA-LM3 shows favorable biodistribution, high tumor uptake, good tumor retention, and few safety concerns. 177Lu-DOTA-LM3 can be used for research in DOTATOC-negative liver metastases, such as pancreatic NET and extensive tumor thrombosis . DOTA-LM3 can be used for the synthesis/research of Radionuclide-Drug Conjugates (RDCs).
|
-
- HY-P5126A
-
|
Radionuclide-Drug Conjugates (RDCs)
Somatostatin Receptor
|
Cancer
|
DOTA-LM3 TFA is a somatostatin receptor (SSTR) antagonist. LM3 refers to p-Cl-Phe- cyclo(D-Cys-Tyr-D-4-amino-Phe(carbamoyl)-Lys-Thr-Cys)D-Tyr- NH2, as well as a somatostatin antagonist. DOTA-LM3 TFA is often isotopically labeled for tracing tumors in vivo, such as 177Lu-DOTA-LM3 TFA and 68 Ga-DOTA-LM3 TFA. 68 Ga-DOTA-LM3 TFA shows favorable biodistribution, high tumor uptake, good tumor retention, and few safety concerns. 177Lu-DOTA-LM3 TFA can be used for research in DOTATOC-negative liver metastases, such as pancreatic NET and extensive tumor thrombosis . DOTA-LM3 (TFA) can be used for the synthesis/research of Radionuclide-Drug Conjugates (RDCs).
|
Cat. No. |
Product Name |
|
Classification |
-
- HY-P10758
-
|
|
Alkynes
|
Alkyne-βAG-TOCA, an octreotide derivative, targets somatostatin receptor type 2 (SST2) . Alkyne-βAG-TOCA can be used for the synthesis/research of Radionuclide-Drug Conjugates (RDCs).
|
Your information is safe with us. * Required Fields.
Inquiry Information
- Product Name:
- Cat. No.:
- Quantity:
- MCE Japan Authorized Agent: