1. Signaling Pathways
  2. PI3K/Akt/mTOR
  3. PI3K

PI3K

PI3K

Phosphoinositide 3-kinase

PI3K (Phosphoinositide 3-kinase), via phosphorylation of the inositol lipid phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), forms the second messenger molecule phosphatidylinositol (3,4,5)-trisphosphate (PI(3,4,5)P3) which recruits and activates pleckstrin homology domain containing proteins, leading to downstream signalling events crucial for proliferation, survival and migration. Class I PI3K enzymes consist of four distinct catalytic isoforms, PI3Kα, PI3Kβ, PI3Kδ and PI3Kγ.

There are three major classes of PI3K enzymes, being class IA widely associated to cancer. Class IA PI3K are heterodimeric lipid kinases composed of a catalytic subunit (p110α, p110β, or p110δ; encoded by PIK3CA, PIK3CB, and PIK3CD genes, respectively) and a regulatory subunit (p85).

The PI3K pathway plays an important role in many biological processes, including cell cycle progression, cell growth, survival, actin rearrangement and migration, and intracellular vesicular transport.

Cat. No. Product Name Effect Purity Chemical Structure
  • HY-114428
    P110δ-IN-1
    Inhibitor 98.44%
    P110δ-IN-1 is a potent and selective inhibitor of P110δ extracted from patent WO 2014055647 A1, with an IC50 of 8.4 nM.
    P110δ-IN-1
  • HY-10220
    SF1126
    SF1126 is a relevant pan and dual first-in-class PI3K/BRD4 inhibitor, has antitumor and anti-angiogenic activity. SF1126 is an RGDS-conjugated LY294002 proagent, which is designed to exhibit increased solubility and bind to specific integrins within the tumor compartment. SF1126 induces cell apoptosis.
    SF1126
  • HY-132231
    FD223
    Inhibitor 98.05%
    FD223 is a potent and selective phosphoinositide 3-kinase delta (PI3Kδ) inhibitor. FD223 displays high potency (IC50=1 nM) and good selectivity over other isoforms (IC50s of 51 nM, 29 nM and 37 nM, respectively for α, β and γ). FD223 exhibits efficient inhibition of the proliferation of acute myeloid leukemia (AML) cell lines by suppressing p-AKT Ser473 thus causing G1 phase arrest during the cell cycle. FD223 has potential for the research of leukemia such as AML.
    FD223
  • HY-112608
    CHMFL-PI3KD-317
    Inhibitor 98.04%
    CHMFL-PI3KD-317 is a highly potent, selective and orally active PI3Kδ inhibitor, with an IC50 of 6 nM, and exhibits over 10-1500 fold selectivity over other class I, II and III PIKK family isoforms, such as PI3Kα (IC50, 62.6 nM), PI3Kβ (IC50, 284 nM), PI3Kγ (IC50, 202.7 nM), PIK3C2A (IC50, >10000 nM), PIK3C2B (IC50, 882.3 nM), VPS34 (IC50, 1801.7 nM), PI4KIIIA (IC50, 574.1 nM) and PI4KIIIB (IC50, 300.2 nM). CHMFL-PI3KD-317 inhibits PI3Kδ-mediated Akt T308 phosphorylation in Raji cells, with an EC50 of 4.3 nM. CHMFL-PI3KD-317 has antiproliferative effects on cancer cells.
    CHMFL-PI3KD-317
  • HY-11080A
    PKI-179 hydrochloride
    Inhibitor 99.66%
    PKI-179 hydrochloride is a potent and orally active dual PI3K/mTOR inhibitor, with IC50s of 8 nM, 24 nM, 74 nM, 77 nM, and 0.42 nM for PI3K-α, PI3K-β, PI3K-γ, PI3K-δ and mTOR, respectively. PKI-179 hydrochloride also exhibits activity over E545K and H1047R, with IC50s of 14 nM and 11 nM, respectively. PKI-179 hydrochloride shows anti-tumor activity in vivo.
    PKI-179 hydrochloride
  • HY-N0728S3
    α-Linolenic acid-13C18
    Inhibitor
    α-Linolenic acid-13C18 is the 13C labeled α-Linolenic acid. α-Linolenic acid, isolated from seed oils, is an essential fatty acid that cannot be synthesized by humans. α-Linolenic acid can affect the process of thrombotic through the modulation of PI3K/Akt signaling. α-Linolenic acid possess the anti-arrhythmic properties and is related to cardiovascular disease and cancer[1].
    α-Linolenic acid-<sup>13</sup>C<sub>18</sub>
  • HY-N4042
    Hirsutenone
    Inhibitor 99.74%
    Hirsutenone is an active botanical diarylheptanoid present in Alnus species and exhibits many biological activities, including anti-inflammatory, anti-tumor promoting and anti-atopic dermatitis effects. Hirsutenone attenuates adipogenesis by binding directly to PI3K and ERK1 in a non-ATP competitive manner. Hirsutenone can be used for the study of obesity.
    Hirsutenone
  • HY-N7635
    Oleanolic acid 28-O-β-D-glucopyranoside
    Inhibitor 99.42%
    Oleanolic acid 28-O-β-D-glucopyranoside (β-D-Glucopyranosyl oleanolate) is an orally active pentacyclic triterpenoid compound. Oleanolic acid 28-O-β-D-glucopyranoside has anti-inflammatory effects. In ulcerative colitis models, Oleanolic acid 28-O-β-D-glucopyranoside can inhibit the inflammatory response, enhance the intestinal epithelial barrier function, and modulate the gut microbiota. Its mechanism of action is related to the PI3K-AKT and MAPK signaling pathways. Oleanolic acid 28-O-β-D-glucopyranoside can be used in the research of diseases such as colitis.
    Oleanolic acid 28-O-β-D-glucopyranoside
  • HY-N9942
    Physalin A
    Inhibitor 99.22%
    Physalin A is a biologically active withanolide. Physalin A shows anti-inflammatory, antifibrotic and ameliorative effects on autophagy in models of disc degeneration. Physalin A has antitumor activity and can induce apoptosis, ROS production and G2/M phase cell cycle arrest. Besides. Physalin A can significantly increase the activity of quinone reductase and increase the expression of detoxifying enzymesc.
    Physalin A
  • HY-10812
    GNE-490
    Inhibitor
    GNE-490, a (thienopyrimidin-2-yl)aminopyrimidine, is a potent pan-PI3K inhibitor with IC50s of 3.5 nM, 25 nM, 5.2 nM, 15 nM for  PI3Kα, PI3Kβ, PI3Kδ and PI3Kγ, respectively. GNE-490 has >200 fold selectivity for mTOR (IC50=750 nM). GNE-490 shows potent suppression efficacy profile against MCF7.1 breast cancer xenograft model.
    GNE-490
  • HY-11105
    Pilaralisib analogue
    Inhibitor 99.74%
    Pilaralisib analogue (XL147 analogue) is a representative and selective PI3Kα inhibitor extracted from patent WO2012006552A1, Compound 147 in Table 1.
    Pilaralisib analogue
  • HY-111510
    IPI-3063
    Inhibitor 99.22%
    IPI-3063 is a potent and selective PI3K p110δ inhibitor with an IC50 of 2.5 ± 1.2 nM.
    IPI-3063
  • HY-131345A
    (S)-PI3Kα-IN-4
    Inhibitor 99.77%
    (S)-PI3Kα-IN-4 is a potent inhibitor of PI3Kα, with an IC50 of 2.3 nM. (S)-PI3Kα-IN-4 shows 38.3-, 4.25-, and 4.93-fold selectivity for PI3Kα over PI3Kβ, PI3Kδ, and PI3Kγ, respectively. (S)-PI3Kα-IN-4 can be used for the research of cancer.
    (S)-PI3Kα-IN-4
  • HY-124036
    DS-7423
    Inhibitor 99.75%
    DS-7423 is a dual PI3K and mTOR inhibitor, with IC50 values of 15.6 nM, 34.9 nM for PI3Kα and mTOR, respectively. DS-7423 possesses anti-tumor activity.
    DS-7423
  • HY-N2590
    Lupenone
    99.74%
    Lupenone is an orally active lupine-type triterpenoid that can be isolated from Musa basjoo. Lupenone Lupenone plays a role through the PI3K/Akt/mTOR and NF-κB signaling pathways. Lupenone has anti-inflammatory, antiviral, antidiabetic and anticancer activities.
    Lupenone
  • HY-N6996R
    Methyl Eugenol (Standard)
    Inhibitor
    Methyl Eugenol (Standard) is the analytical standard of Methyl Eugenol. This product is intended for research and analytical applications. Methyl Eugenol is a bait that has oral activity against oriental fruit fly (Hendel).Methyl Eugenol has anti-cancer and anti-inflammatory activities. Methyl Eugenol can induce Autophagy in cells. Methyl Eugenol can be used in the study of intestinal ischemia/reperfusion injury.
    Methyl Eugenol (Standard)
  • HY-17635S
    Leniolisib-d5
    Inhibitor 98.78%
    Leniolisib-d5 is a deuterated labeled Leniolisib. Leniolisib (CDZ173) is a potent and selective PI3Kδ inhibitor. Leniolisib has the potential for immunodeficiency disorders treatment.
    Leniolisib-d<sub>5</sub>
  • HY-153120A
    PI3K/mTOR Inhibitor-13 sodium
    Inhibitor 98.13%
    PI3K/mTOR Inhibitor-13 sodium is an orally active dual inhibitor of phosphoinositol 3-kinase (PI3K) and mTOR kinase. PI3K/mTOR Inhibitor-13 sodium has potential applications in sexual diseases, solid tumor and idiopathic pulmonary fibrosis (IPF).
    PI3K/mTOR Inhibitor-13 sodium
  • HY-150019
    PI3K-IN-36
    Inhibitor 98.76%
    PI3K-IN-36 (compound A36) is a potent PI3K inhibitor. PI3K-IN-36 can be used in research of follicular lymphoma (FL).
    PI3K-IN-36
  • HY-15280
    GSK2292767
    Inhibitor 98.89%
    GSK2292767 is a potent and selective inhibitor of PI3Kδ, with a pIC50 of 10.1. GSK2292767 showing greater than 500-fold selective over the other PI3K isoforms. GSK2292767 can be used for the research of respiratory disease.
    GSK2292767
Cat. No. Product Name / Synonyms Application Reactivity

Phosphatidylinositol 3 kinases (PI3Ks) are a family of lipid kinases that integrate signals from growth factors, cytokines and other environmental cues, translating them into intracellular signals that regulate multiple signaling pathways. These pathways control many physiological functions and cellular processes, which include cell proliferation, growth, survival, motility and metabolism[1]

 

In the absence of activating signals, p85 interacts with p110 and inhibits p110 kinase activity. Following receptor tyrosine kinase (RTK) or G protein-coupled receptor (GPCR) activation, class I PI3Ks are recruited to the plasma membrane, where p85 inhibition of p110 is relieved and p110 phosphorylates PIP2 to generate PIP3. The activated insulin receptor recruits intracellular adaptor protein IRS1. Phosphorylation of IRS proteins on tyrosine residues by the insulin receptor initiates the recruitment and activation of PI3K. PIP3 acts as a second messenger which promotes the phosphorylation of Akt at Thr308 by PDK-1. RTK activation can also trigger Ras-Raf-MEK-ERK pathway. Activated Akt, ERK and RSK phosphorylate TSC2 at multiple sites to inhibit TSC1-TSC2-TBC1D7, which is the TSC complex that acts as a GTPase-activating protein (GAP) for the small GTPase RHEB. During inhibition of the TSC complex, GTP-loaded RHEB binds the mTOR catalytic domain to activate mTORC1. Glycogen synthase kinase 3β (GSK-3β) activates the TSC complex by phosphorylating TSC2 at Ser1379 and Ser1383. Phosphorylation of these two residues requires priming by AMPK-dependent phosphorylation of Ser1387. Wnt signaling inhibits GSK-3β and the TSC complex, and thus activates mTORC1. mTORC2 is activated by Wnt in a manner dependent on the small GTPase RAC1. Akt activation contributes to diverse cellular activities which include cell survival, growth, proliferation, angiogenesis, metabolism, and migration. Important downstream targets of Akt are GSK-3, FOXOs, BAD, AS160, eNOS, and mTOR. mTORC1 negatively regulates autophagy through multiple inputs, including inhibitory phosphorylation of ULK1, and promotes protein synthesis through activation of the translation initiation promoter S6K and through inhibition of the inhibitory mRNA cap binding 4E-BP1[1][2][3].

 

PI3Kδ is a heterodimeric enzyme, typically composed of a p85α regulatory subunit and a p110δ catalytic subunit. In T cells, the TCR, the costimulatory receptor ICOS and the IL-2R can activate PI3Kδ. In B cells, PI3Kδ is activated upon crosslinking of the B cell receptor (BCR). The BCR co-opts the co-receptor CD19 or the adaptor B cell associated protein (BCAP), both of which have YXXM motifs to which the p85α SH2 domains can bind. In lumphocytes, BTK and ITK contribute to the activation of PLCγ and promotes the generation of DAG and the influx of Ca2+, which in turn activate PKC and the CARMA1-, BCL 10- and MALT1 containing (CBM) complex. The resulting NF-κB inhibitor kinase (IKK) activation leads to the phosphorylation and the degradation of IκB, and to the nuclear accumulation of the p50-p65 NF-κB heterodimer. MyD88 is an adapter protein that mediates signal transduction for most TLRs and leads to activation of PI3K[4].

 

Reference:

[1]. Thorpe LM, et al. PI3K in cancer: divergent roles of isoforms, modes of activation and therapeutic targeting.Nat Rev Cancer. 2015 Jan;15(1):7-24. 
[2]. Vanhaesebroeck B, et al. PI3K signalling: the path to discovery and understanding.Nat Rev Mol Cell Biol. 2012 Feb 23;13(3):195-203. 
[3]. Fruman DA, et al. The PI3K Pathway in Human Disease.Cell. 2017 Aug 10;170(4):605-635.
[4]. Lucas CL, et al. PI3Kδ and primary immunodeficiencies.Nat Rev Immunol. 2016 Nov;16(11):702-714. 

PI3Kα

PI3Kβ

PI3Kγ

PI3Kδ

PI3KC2α

PI3KC2β

PI3KC2γ

Vps34

PI3K

PI3KC3

p120γ

Your Search Returned No Results.

Sorry. There is currently no product that acts on isoform together.

Please try each isoform separately.

PI3K Inhibitors, Activators & Modulators
Product NamePI3KαPI3KβPI3KγPI3KδPI3KC2αPI3KC2βPI3KC2γVps34PI3KPI3KC3p120γPurity    
3-Methyladenine  
PtdIns3Kγ, IC50: 60 μM (Cell Assay)
    
Vps34, IC50: 25 μM (Cell Assay)
   99.91%
LY294002
p110α, IC50: 0.5 μM
p110β, IC50: 0.97 μM
 
p110δ, IC50: 0.57 μM
       99.95%
Quercetin 
PI3Kβ, IC50: 5.4 μM
PI3Kγ, IC50: 3 μM
PI3Kδ, IC50: 2.4 μM
       99.80%
740 Y-P        
PI3K
  99.96%
Alpelisib
p110α, IC50: 5 nM
p110α-H1047R, IC50: 4 nM
p110α-E545K, IC50: 4 nM
p110β, IC50: 1200 nM
p110γ, IC50: 250 nM
p110δ, IC50: 290 nM
       99.95%
Wortmannin        
PI3K, IC50: 3 nM
  99.86%
AZD-7648  
PI3Kγ, IC50: 1.37 μM
        99.86%
α-Linolenic acid        
PI3K
  99.92%
Idelalisib
p110α, IC50: 820 nM
p110β, IC50: 565 nM
p110γ, IC50: 89 nM
p110δ, IC50: 2.5 nM
   
hVps34, IC50: 978 nM
   99.78%
Pictilisib
p110α, IC50: 3 nM
p110α-H1047R, IC50: 3 nM
p110α-E545K, IC50: 3 nM
p110β, IC50: 33 nM
p110γ, IC50: 75 nM
p110δ, IC50: 3 nM
       99.80%
Inavolisib
PI3Kα, IC50: 0.038 nM
          99.96%
Buparlisib
p110α, IC50: 52 nM
p110α-H1047R, IC50: 58 nM
p110α-E545K, IC50: 99 nM
p110β, IC50: 166 nM
p110γ, IC50: 262 nM
p110δ, IC50: 116 nM
   
Vps34, IC50: 2.4 μM
   99.90%
Dactolisib
p110α, IC50: 4 nM
p110α-H1047R, IC50: 4.6 nM
p110α-E545K, IC50: 5.7 nM
p110β, IC50: 75 nM
p110γ, IC50: 5 nM
p110δ, IC50: 7 nM
       99.94%
Duvelisib
p110α, IC50: 1602 nM
p110β, IC50: 85 nM
p110γ, IC50: 27.4 nM
p110δ, IC50: 2.5 nM
       99.88%
SAR405       
Vps34, IC50: 1.2 nM
Vps34, Kd: 1.5 nM
   99.74%
Copanlisib
PI3Kα, IC50: 0.5 nM
PI3Kβ, IC50: 3.7 nM
PI3Kγ, IC50: 6.4 nM
PI3Kδ, IC50: 0.7 nM
       99.50%
Eganelisib
PI3Kα, IC50: 3.2 μM
PI3Kβ, IC50: 3.5 μM
PI3Kγ, IC50: 16 nM
        99.68%
Isorhamnetin        
PI3-K
  99.94%
Recilisib        
PI3K
  99.94%
PI-103
p110α, IC50: 8 nM
p110β, IC50: 88 nM
p110γ, IC50: 150 nM
p110δ, IC50: 48 nM
PI3KC2α, IC50: 1 μM
PI3KC2β, IC50: 26 nM
 
hsVPS34, IC50: 2.3 μM
   99.82%
YM-201636
p110α, IC50: 3.3 μM
          98.05%
Omipalisib
p110α, Ki: 0.019 nM
p110α-H1047R, Ki: 0.009 nM
p110α-E545K, Ki: 0.008 nM
p110α-E542K, Ki: 0.008 nM
p110β, Ki: 0.13 nM
p110γ, Ki: 0.06 nM
p110δ, Ki: 0.024 nM
       99.94%
Copanlisib dihydrochloride
PI3Kα, IC50: 0.5 nM
PI3Kβ, IC50: 3.7 nM
PI3Kγ, IC50: 6.4 nM
PI3Kδ, IC50: 0.7 nM
       99.55%
Taselisib
PI3Kα, Ki: 0.29 nM
PI3Kβ, Ki: 9.1 nM
PI3Kγ, Ki: 0.97 nM
PI3Kδ, Ki: 0.12 nM
       99.75%
Vps34-IN-1       
Vps34, IC50: 25 nM
   99.79%
hSMG-1 inhibitor 11j
PI3Kα, IC50: 92 nM
 
PI3Kγ, IC50: 60 nM
        99.82%
Fimepinostat
PI3Kα, IC50: 19 nM
PI3Kβ, IC50: 54 nM
PI3Kγ, IC50: 311 nM
PI3Kδ, IC50: 39 nM
       99.95%
PI3K/AKT-IN-1  
PI3Kγ, IC50: 6.99 μM
PI3Kδ, IC50: 4.01 μM
       99.64%
Gedatolisib
PI3Kα, IC50: 0.4 nM
PI3Kα-H1047R, IC50: 0.6 nM
PI3Kα-E545K, IC50: 0.6 nM
PI3Kβ, IC50: 6 nM
PI3Kγ, IC50: 5.4 nM
PI3Kδ, IC50: 6 nM
       99.68%
Autophinib       
Vps34, IC50: 19 nM
   99.95%
Esculetin        
PI3K
  99.79%
Quercetin dihydrate 
PI3Kβ, IC50: 5.4 μM
PI3Kγ, IC50: 2.4 μM
PI3Kδ, IC50: 3.0 μM
       
Thymoquinone        
PI3K
  99.80%
Dihydrocapsaicin        
PI3K
  99.93%
GSK2636771 
PI3Kβ, Ki: 0.89 nM
PI3Kβ, IC50: 5.2 nM
         99.59%
PIK-90
p110α, IC50: 11 nM
p110β, IC50: 350 nM
p110γ, IC50: 18 nM
p110δ, IC50: 58 nM
PI3KC2α, IC50: 47 nM
PI3KC2β, IC50: 64 nM
 
hsVPS34, IC50: 830 nM
   99.70%
Paxalisib
PI3Kα, Ki: 2 nM
PI3Kβ, Ki: 46 nM
PI3Kγ, Ki: 10 nM
PI3Kδ, Ki: 3 nM
       99.63%
Umbralisib
PI3Kα, Kd: >10000 nM
PI3Kβ, Kd: >10000 nM
PI3Kγ, Kd: 1400 nM
PI3Kδ, EC50: 22.2 nM
PI3Kδ, Kd: 6.2 nM
       98.94%
ZSTK474
PI3Kα, IC50: 16 nM
PI3Kβ, IC50: 44 nM
PI3Kγ, IC50: 49 nM
PI3Kδ, IC50: 4.6 nM
       99.71%
PF-04691502
PI3Kα, Ki: 1.8 nM
PI3Kβ, Ki: 2.1 nM
PI3Kγ, Ki: 1.9 nM
PI3Kδ, Ki: 1.6 nM
       99.91%
hSMG-1 inhibitor 11e
PI3Kα, IC50: 61 nM
 
PI3Kγ, IC50: 92 nM
        99.81%
AZD 6482
PI3Kα, IC50: 136 nM
PI3Kβ, IC50: 0.69 nM
PI3Kγ, IC50: 47.8 nM
PI3Kδ, IC50: 13.6 nM
 
PI3K-C2β, IC50: 54.1 nM
 
hVps34, IC50: 3390 nM
   99.93%
GO-203 TFA        
PI3K
  99.28%
Samotolisib
PI3Kα, IC50: 6.07 nM
PI3Kβ, IC50: 77.6 nM
PI3Kγ, IC50: 23.8 nM
PI3Kδ, IC50: 38 nM
       99.27%
AS-252424
PI3Kα, IC50: 935 nM
PI3Kβ, IC50: 20 μM
PI3Kγ, IC50: 30 nM
PI3Kδ, IC50: 20 μM
       99.71%
PIK-93
p110α, IC50: 39 nM
p110β, IC50: 590 nM
p110γ, IC50: 16 nM
p110δ, IC50: 120 nM
PI3KC2α, IC50: 16 μM
PI3KC2β, IC50: 140 nM
 
hsVPS34, IC50: 320 nM
   99.81%
Linperlisib   
PI3Kδ, IC50: 6.4 nM
       99.51%
TGX-221 
p110β, IC50: 8.5 nM
 
p110δ, IC50: 211 nM
       99.74%
Vps34-PIK-III
PI(3)Kα, IC50: 3.96 μM
 
PI(3)Kγ, IC50: 3.04 μM
PI(3)Kδ, IC50: 1.2 μM
   
Vps34, IC50: 18 nM
   99.63%
Apitolisib
PI3Kα, IC50: 5 nM
PI3Kβ, IC50: 27 nM
PI3Kγ, IC50: 14 nM
PI3Kδ, IC50: 7 nM
       99.29%
Bimiralisib
PI3Kα, IC50: 33 nM
PI3Kα-H1047R, IC50: 36 nM
PI3Kα-E545K, IC50: 136 nM
PI3Kα-E542K, IC50: 63 nM
PI3Kβ, IC50: 661 nM
PI3Kγ, IC50: 708 nM
PI3Kδ, IC50: 451 nM
   
Vps34, IC50: 6486 nM
   99.80%
AZD8186
PI3Kα, IC50: 35 nM
PI3Kβ, IC50: 4 nM
PI3Kγ, IC50: 675 nM
PI3Kδ, IC50: 12 nM
       99.95%
TG100-115  
PI3Kγ, IC50: 83 nM
PI3Kδ, IC50: 235 nM
       99.41%
Sophocarpine        
PI3K
  98.63%
Leniolisib
PI3Kα, IC50: 280 nM
PI3Kβ, IC50: 480 nM
PI3Kγ, IC50: 2.57 μM
PI3Kδ, IC50: 11 nM
       99.28%
Parsaclisib   
PI3Kδ, IC50: 1 nM
       99.31%
Dactolisib Tosylate
p110α, IC50: 4 nM
p110α-H1047R, IC50: 4.6 nM
p110α-E545K, IC50: 5.7 nM
p110β, IC50: 75 nM
p110γ, IC50: 5 nM
p110δ, IC50: 7 nM
       99.87%
Voxtalisib
p110α, IC50: 39 nM
p110β, IC50: 113 nM
p110γ, IC50: 9 nM
p110δ, IC50: 43 nM
       99.02%
PI3K-IN-1        
PI3K
  99.93%
PI3K-IN-30
PI3Kα, IC50: 5.1 nM
PI3Kβ, IC50: 136 nM
PI3Kγ, IC50: 30.7 nM
PI3Kδ, IC50: 8.9 nM
       98.21%
CNX-1351
PI3Kα, IC50: 6.8 nM
PI3Kβ, IC50: 166 nM
PI3Kγ, IC50: 3020 nM
PI3Kδ, IC50: 240.3 nM
       99.88%
BGT226
PI3Kα, IC50: 4 nM
PI3Kβ, IC50: 63 nM
PI3Kγ, IC50: 38 nM
        99.51%
IC-87114 
PI3Kβ, IC50: 75 μM
PI3Kγ, IC50: 29 μM
PI3Kδ, IC50: 0.5 μM
       99.83%
Deoxyshikonin        
PI3K
  99.96%
PIK-75 hydrochloride
p110α, IC50: 5.8 nM
p110β, IC50: 1.3 μM
p110γ, IC50: 76 nM
p110δ, IC50: 510 nM
PI3KC2α, IC50: 10 μM
PI3KC2β, IC50: 1 μM
 
hsVPS34, IC50: 2.6 μM
   99.72%
Pilaralisib
PI3Kα, IC50: 39 nM
PI3Kβ, IC50: 383 nM
PI3Kγ, IC50: 23 nM
PI3Kδ, IC50: 36 nM
   
Vps34, IC50: 6974 nM
   99.14%
KU-0060648
PI3Kα, IC50: 4 nM
PI3Kβ, IC50: 0.5 nM
PI3Kγ, IC50: 0.594 μM
PI3Kδ, IC50: 0.1 nM
       99.62%
Flupentixol dihydrochloride
PI3Kα, IC50: 127 nM
          99.73%
1,3-Dicaffeoylquinic acid        
PI3K
  99.09%
Serabelisib
p110α, IC50: 15 nM
p110β, IC50: 4500 nM
p110γ, IC50: 1900 nM
p110δ, IC50: 13900 nM
       99.44%
GSK1059615
PI3Kα, IC50: 0.4 nM
PI3Kβ, IC50: 0.6 nM
PI3Kγ, IC50: 2 nM
PI3Kδ, IC50: 5 nM
       ≥99.0%
PKI-402
PI3Kα, IC50: 2 nM
PI3Kα-H1047R, IC50: 3 nM
PI3Kα-E545K, IC50: 3 nM
PI3Kβ, IC50: 7 nM
PI3Kγ, IC50: 16 nM
PI3Kδ, IC50: 14 nM
       98.43%
VS-5584
PI3Kα, IC50: 16 nM
PI3Kβ, IC50: 68 nM
PI3Kγ, IC50: 25 nM
PI3Kδ, IC50: 42 nM
   
Vps34, IC50: 7470 nM
   99.14%
AS-605240
PI3Kα, IC50: 60 nM
PI3Kβ, IC50: 270 nM
PI3Kγ, IC50: 8 nM
PI3Kγ, Ki: 7.8 nM
PI3Kδ, IC50: 300 nM
       98.51%
GNE-317        
PI3K
  99.14%
SAR-260301
PI3Kα, IC50: 1539 nM
PI3Kβ, IC50: 23 nM
PI3Kγ, IC50: 10000 nM
PI3Kδ, IC50: 468 nM
  
PI3KC2γ, IC50: 3812 nM
Vps34, IC50: 183 nM
   99.95%
CGS 15943  
p110γ, IC50: 1.1 μM
p110δ, IC50: 8.47 μM
       99.96%
Buparlisib Hydrochloride
p110α, IC50: 52 nM
p110α-H1047R, IC50: 58 nM
p110α-E545K, IC50: 99 nM
p110β, IC50: 166 nM
p110γ, IC50: 262 nM
p110δ, IC50: 116 nM
   
Vps34, IC50: 2.4 μM
   99.88%
PI-103 Hydrochloride
p110α, IC50: 2 nM
p110β, IC50: 3 nM
p110γ, IC50: 15 nM
p110δ, IC50: 3 nM
       98.55%
A66
p110α, IC50: 32 nM
p110α E545K, IC50: 30 nM
p110α H1047R, IC50: 43 nM
 
p110γ, IC50: 3480 nM
  
PI3K-C2β, IC50: 462 nM
     99.73%
PI3Kγ inhibitor AZ2
PI3Kα, pIC50: 5.1
PI3Kβ, pIC50: 4.5
PI3Kγ, pIC50: 9.3
PI3Kδ, pIC50: 6.6
       99.25%
AMG319
PI3Kα, IC50: 33 μM
PI3Kβ, IC50: 2.7 μM
PI3Kγ, IC50: 850 nM
PI3Kδ, IC50: 18 nM
       99.08%
Tenalisib  
PI3Kγ, IC50: 33 nM
PI3Kδ, IC50: 25 nM
       98.83%
PQR530
PI3Kα, Kd: 0.84 nM
PI3Kβ, Kd: 6.1 nM
PI3Kγ, Kd: 10 nM
PI3Kδ, Kd: 11 nM
 
PI3KC2β, Kd: 100 nM
     99.98%
Roginolisib
PI3Kα, IC50: 18500 nM
PI3Kβ, IC50: 2850 nM
 
PI3Kδ, IC50: 145 nM
       99.89%
MTX-531
PI3Kα, IC50: 6.4 nM
PI3Kβ, IC50: 233 nM
PI3Kγ, IC50: 8.3 nM
PI3Kδ, IC50: 1.1 nM
       99.87%
SF2523
PI3Kα, IC50: 34 nM
 
PI3Kγ, IC50: 158 nM
        98.25%
Ginkgolic Acid (C13:0)   
PI3Kδ, IC50: 2.49 μM
       99.92%
Nemiralisib
PI3Kα, pIC50: 5.3
PI3Kβ, pIC50: 5.8
PI3Kγ, pIC50: 5.2
PI3Kδ, pKi: 9.9
       99.80%
Zandelisib   
PI3Kδ, IC50: 3.5 nM
       99.90%
AZD3458
PI3Kα, pIC50: 5.1
PI3Kβ, pIC50: 4.5
PI3Kγ, pIC50: 9.1
PI3Kδ, pIC50: 6.5
PI3KC2α, pIC50: 5
PI3KC2β, pIC50: 7.5
PI3KC2γ, pIC50: 5.5
  
PI3KC3, pIC50: 5.1
 99.71%
BAY1082439
PI3Kα
PI3Kβ
 
PI3Kδ
       98.02%
BGT226 maleate
PI3Kα, IC50: 4 nM
PI3Kβ, IC50: 63 nM
PI3Kγ, IC50: 38 nM
        99.92%
Duvelisib (R enantiomer)        
PI3K
  99.00%
Pictilisib dimethanesulfonate
p110α, IC50: 3 nM
p110α-H1047R, IC50: 3 nM
p110α-E545K, IC50: 3 nM
p110β, IC50: 33 nM
p110γ, IC50: 75 nM
p110δ, IC50: 3 nM
       99.72%
Sonolisib
p110α, IC50: 0.1 nM
  
p110δ, IC50: 2.9 nM
      
p120γ, IC50: 1 nM
99.00%
Brevianamide F
PI3Kα, IC50: 4.8 μM
          99.03%
GNE-493
PI3Kα, IC50: 3.4 nM
PI3Kβ, IC50: 12 nM
PI3Kγ, IC50: 16 nM
PI3Kδ, IC50: 16 nM
       99.81%
GDC-0326
PI3Kα, Ki: 0.2 nM
PI3Kβ, Ki: 26.6 nM
PI3Kγ, Ki: 10.2 nM
PI3Kδ, Ki: 4 nM
       99.92%
PF-06843195
PI3Kα, IC50: 18 nM (in Rat1 fibroblasts)
PI3Kα, Ki: 0.018 nM
PI3Kβ, IC50: 360 nM (in Rat1 fibroblasts)
 
PI3Kδ, IC50: 160 nM (in Rat1 fibroblasts)
PI3Kδ, Ki: 0.28 nM
       98.01%
PF-04979064
PI3Kα, Ki: 0.13 nM
 
PI3Kγ, Ki: 0.111 nM
PI3Kδ, Ki: 0.122 nM
       99.54%
Sophocarpine monohydrate        
PI3K
  99.91%
alpha-Bisabolol        
PI3K
  
Glaucocalyxin A        
PI3K
  99.39%
4-Methylbenzylidene camphor        
PI3K
  99.87%
PI4KIIIbeta-IN-9
PI3Kα, IC50: 2 μM
 
PI3Kγ, IC50: 1046 nM
PI3Kδ, IC50: 152 nM
  
PI3KC2γ, IC50: 1 μM
    99.18%
Vps34-IN-2       
Vps34, IC50: 2 nM
   99.81%
AS-604850
PI3Kα, IC50: 4.5 μM
 
PI3Kγ, IC50: 0.25 μM
PI3Kγ, Ki: 0.18 μM
        99.95%
PI3Kα-IN-9
PI3Kα, IC50: 4.4 nM
PI3Kβ, IC50: 153 nM
PI3Kγ, IC50: 128 nM
PI3Kδ, IC50: 146 nM
       99.17%
YH-306        
PI3K
  98.34%
Izorlisib
PI3Kα, IC50: 14 nM
PI3Kα-H1047R, IC50: 5.6 nM
PI3Kα-E545K, IC50: 6.7 nM
PI3Kα-E542K, IC50: 6.7 nM
PI3Kβ, IC50: 120 nM
PI3Kγ, IC50: 36 nM
PI3Kδ, IC50: 500 nM
 
PI3KC2β, IC50: 5.3 μM
     99.01%
PI-3065
p110α, IC50: 910 nM
p110β, IC50: 600 nM
 
p110δ, IC50: 5 nM
       98.97%
AZD8154  
PI3Kγ
        99.88%
PI3K/mTOR Inhibitor-2
PI3Kα, IC50: 3.4 nM
PI3Kβ, IC50: 34 nM
PI3Kγ, IC50: 1 nM
PI3Kδ, IC50: 16 nM
       99.10%
Hederacolchiside A1        
PI3K
  ≥99.0%
PI3K-IN-31
PI3Kα, IC50: 3.7 nM
PI3Kβ, IC50: 74 nM
PI3Kγ, IC50: 14.6 nM
PI3Kδ, IC50: 9.9 nM
       99.55%
AMG 511
PI3Kα, Ki: 4 nM
PI3Kβ, Ki: 6 nM
PI3Kγ, Ki: 1 nM
PI3Kδ, Ki: 2 nM
       99.38%
PIK-75
p110α, IC50: 5.8 nM
p110β, IC50: 1.3 μM
p110γ, IC50: 76 nM
p110δ, IC50: 510 nM
PI3KC2α, IC50: 10 μM
PI3KC2β, IC50: 1 μM
 
hsVPS34, IC50: 2.6 μM
   99.94%
PI4K-IN-1
PI3Kα, pIC50: 4.0
PI3Kβ, pIC50: <3.7
PI3Kγ, pIC50: 5.0
PI3Kδ, pIC50: <4.1
       98.61%
GSK-F1        
PI3KA, pIC50: 5.8
PI3KB, pIC50: 5.9
PI3KG, pIC50: 5.9
PI3KD, pIC50: 6.4
  
NSC781406
PI3Kα, IC50: 2 nM
PI3Kβ, IC50: 9.4 nM
PI3Kγ, IC50: 2.7 nM
PI3Kδ, IC50: 14 nM
       99.97%
Leniolisib phosphate
PI3Kα, IC50: 280 nM
PI3Kβ, IC50: 480 nM
PI3Kγ, IC50: 2.57 nM
PI3Kδ, IC50: 11 nM
       99.10%
HS-173
PI3Kα, IC50: 0.8 nM
          99.04%
MTX-211        
PI3K
  99.81%
IITZ-01  
PI3Kγ, IC50: 2.62 μM
        98.18%
Acalisib
p110α, IC50: 5441 nM
p110β, IC50: 3377 nM
p110γ, IC50: 1389 nM
p110δ, IC50: 12.7 nM
   
hVps34, IC50: 12682 nM
   99.98%
AQX-016A        
PI3K
  98.00%
Polygalasaponin F        
PI3K
  99.85%
PI3K/mTOR Inhibitor-4
PI3Kα, IC50: 0.63 nM
PI3Kβ, IC50: 94.54 nM
PI3Kγ, IC50: 22 nM
PI3Kδ, IC50: 9.2 nM
       
GNE-477
PI3Kα, IC50: 4 nM
          98.75%
AZD-8835
PI3Kα, IC50: 6.2 nM
PI3Kα-E545K, IC50: 6 nM
PI3Kα-H1047R, IC50: 5.8 nM
PI3Kβ, IC50: 431 nM
PI3Kγ, IC50: 90 nM
PI3Kδ, IC50: 5.7 nM
       98.62%
Seletalisib   
PI3Kδ, IC50: 12 nM
       99.79%
ETP-45658
PI3Kα, IC50: 22.0 nM
PI3Kβ, IC50: 129.0 nM
PI3Kγ, IC50: 717.3 nM
PI3Kδ, IC50: 39.8 nM
       98.97%
CZC24832 
PI3Kβ, IC50: 1.1 μM
PI3Kγ, IC50: 27 nM
PI3Kδ, IC50: 8.194 μM
       99.07%
PKI-179
PI3Kα, IC50: 8 nM
PI3Kβ, IC50: 24 nM
PI3Kγ, IC50: 74 nM
PI3Kδ, IC50: 77 nM
       ≥98.0%
PI-828
p110α, IC50: 173 nM
          99.62%
PIK-294
p110α, IC50: 10 μM
p110β, IC50: 490 nM
p110γ, IC50: 160 nM
p110δ, IC50: 10 nM
       99.90%
PI3K/mTOR Inhibitor-11
PI3Kα, IC50: 3.5 nM
  
PI3Kδ, IC50: 4.6 nM
       98.74%
SRX3207
PI3Kα, IC50: 861 nM
 
PI3Kγ, IC50: 11100 nM
PI3Kδ, IC50: 1280 nM
       98.50%
CAY10505  
PI3Kγ, IC50: 30 nM (Neurons)
        99.75%
NVP-BAG956
PI3Kα, IC50: 56 nM
PI3Kβ, IC50: 446 nM
PI3Kγ, IC50: 117 nM
PI3Kδ, IC50: 35 nM
       99.21%
Umbralisib hydrochloride
PI3Kα, Kd: >10000 nM
PI3Kβ, Kd: >10000 nM
PI3Kγ, Kd: 1400 nM
PI3Kδ, EC50: 22.2 nM
PI3Kδ, Kd: 6.2 nM
       99.04%
TG 100713
PI3Kα, IC50: 165 nM
PI3Kβ, IC50: 215 nM
PI3Kγ, IC50: 50 nM
PI3Kδ, IC50: 24 nM
       99.49%
Ifupinostat
PI3Kα, IC50: 0.1 μM
          99.60%
KTC1101
PI3Kα, IC50: 3.72 nM
PI3Kβ, IC50: 36.29 nM
PI3Kγ, IC50: 17.09 nM
PI3Kδ, IC50: 1.22 nM
       98.09%
WYE-687
PI3K alpha, IC50: 81 nM
 
PI3K gamma, IC50: 3.11 μM
        98.05%
SB02024       
Vps34
   99.70%
FD223
PI3Kα, IC50: 51 nM
PI3Kβ, IC50: 29 nM
PI3Kγ, IC50: 37 nM
PI3Kδ, IC50: 1 nM
       98.05%
CHMFL-PI3KD-317
PI3Kα, IC50: 62.6 nM
PI3Kβ, IC50: 284 nM
PI3Kγ, IC50: 202.7 nM
PI3Kδ, IC50: 6 nM
 
PIK3C2B, IC50: 882.3 nM
 
Vps34, IC50: 1801.7 nM
   98.04%
PKI-179 hydrochloride
PI3Kα, IC50: 8 nM
PI3Kβ, IC50: 24 nM
PI3Kγ, IC50: 74 nM
PI3Kδ, IC50: 77 nM
       99.66%
GNE-490
PI3Kα, IC50: 3.5 nM
PI3Kβ, IC50: 25 nM
PI3Kγ, IC50: 15 nM
PI3Kδ, IC50: 5.2 nM
       
Pilaralisib analogue
PI3K-alpha
          99.74%
IPI-3063
p110α, IC50: 1170 nM
p110β, IC50: 1508 nM
p110γ, IC50: 2187 nM
p110δ, IC50: 2.5 nM
       99.22%
(S)-PI3Kα-IN-4
PI3Kα, IC50: 2.3 nM
          99.77%
GSK2292767   
PI3Kδ, pIC50: 10.1
       98.89%
AS-041164
PI3Kα, IC50: 240 nM
PI3Kβ, IC50: 1.4 μM
PI3Kγ, IC50: 70 nM
PI3Kδ, IC50: 1.7 μM
       99.02%
ETP-46321
p110α, Ki: 2.3 nM
PI3Kα-H1047R, Ki: 2.33 nM
PI3Kα-E545K, Ki: 1.77 nM
PI3Kα-E542K, Ki: 1.89 nM
p110β, Ki: 170 nM
p110γ, Ki: 179 nM
p110δ, Ki: 14.2 nM
       99.34%
ON 146040
PI3Kα, IC50: 14 nM
PI3Kβ, IC50: 3 μM
PI3Kγ, IC50: 1 μM
PI3Kδ, IC50: 20 nM
       
Parsaclisib hydrochloride   
PI3Kδ, IC50: 1 nM
       98.74%
LX2343        
PI3K, IC50: 15.99 μM
  99.80%
Roginolisib hemifumarate   
PI3Kδ, IC50: 145 nM
       99.80%
PI3K-IN-2
PI3Kα, IC50: 13 nM
PI3Kβ, IC50: 7.1 nM
PI3Kγ, IC50: 8.6 nM
PI3Kδ, IC50: 190 nM
       99.62%
PI3Kα-IN-4
PI3Kα, IC50: 1.8 nM
          99.76%
Vulolisib
PI3Kα, IC50: 0.2 nM
PI3Kβ, IC50: 168 nM
PI3Kγ, IC50: 90 nM
PI3Kδ, IC50: 49 nM
       99.60%
PARP/PI3K-IN-1
PI3Kα, pIC50: 8.25
PI3Kβ, pIC50: 6.54
PI3Kγ, pIC50: 6.08
PI3Kδ, pIC50: 8.13
       99.43%
PI3K-IN-37
PI3Kα, IC50: 6 nM
PI3Kβ, IC50: 8 nM
 
PI3Kδ, IC50: 4 nM
       ≥99.0%
PI3K-IN-22
PI3Kα, IC50: 0.9 nM
          99.50%
OMS14  
PI3Kγ
        99.09%
WYE-687 dihydrochloride
PI3K alpha, IC50: 81 nM
 
PI3K gamma, IC50: 3.11 μM
        ≥98.0%
NVS-PI3-4  
PI3Kγ
        99.40%
MJ04  
PI3Kγ, IC50: 3667 nM
        98.08%
TASP0415914  
PI3Kγ, IC50: 29 nM
        99.02%
PI3K-IN-18
PI3Kα, IC50: 41 nM
          ≥99.0%
GS-9901   
PI3Kδ, IC50: 1 nM
       99.97%
CHMFL-PI4K-127
PI3Kα, IC50: 191 ± 36 nM
PI3Kβ, IC50: 392 ± 27 nM
PI3Kγ, IC50: 324 ± 19 nM
PI3Kδ, IC50: 104 ± 3 nM
   
Vps34, IC50: 681 ± 25 nM
   99.94%
PF-4989216
PI3Kα, Ki: 0.6 nM
          99.38%
FD274
PI3Kα, IC50: 0.65 nM
PI3Kβ, IC50: 1.57 nM
PI3Kγ, IC50: 0.42 nM
PI3Kδ, IC50: 0.65 nM
       99.45%
α-Linolenic acid (Standard)        
PI3K
  
PIK-293
PI3Kα, IC50: 100 μM
PI3Kβ, IC50: 10 μM
PI3Kγ, IC50: 25 μM
PI3Kδ, IC50: 0.24 μM
       99.41%
CAL-130 Hydrochloride
p110α, IC50: 115 nM
p110β, IC50: 56 nM
p110γ, IC50: 6.1 nM
p110δ, IC50: 1.3 nM
       98.74%
NVP-QAV-572        
PI3K, IC50: 10 nM
  98.05%
PI3Kδ-IN-15
p110α, IC50: 152 nM
p110β, IC50: 145 nM
p110γ, IC50: 15.3 nM
p110δ, IC50: 0.5 nM
       99.52%
PI3Kα/mTOR-IN-1
PI3Kα, Ki: 12.5 nM
PI3Kα, IC50: 7 nM (Cell Assay)
          99.30%
Umbralisib tosylate
PI3Kα, Kd: >10000 nM
PI3Kβ, Kd: >10000 nM
PI3Kγ, Kd: 1400 nM
PI3Kδ, Kd: 6.2 nM
       
Nemiralisib hydrochloride
PI3Kα, pIC50: 5.3
PI3Kβ, pIC50: 5.8
PI3Kγ, pIC50: 5.2
PI3Kδ, pKi: 9.9
       
Umbralisib sulfate
PI3Kα, Kd: >10000
PI3Kβ, Kd: >10000
PI3Kγ, Kd: 1400
PI3Kδ, Kd: 6.2
       
PI3Kδ-IN-8
PI3Kα, IC50: 377.2 nM
PI3Kβ, IC50: 241.6 nM
PI3Kγ, IC50: 17.9 nM
PI3Kδ, IC50: 3.3 nM
       
LAS191954   
PI3Kδ, IC50: 2.6 nM
       
PI3K/HDAC-IN-1
PI3Kα, IC50: 42 nM
PI3Kβ, IC50: 101 nM
PI3Kγ, IC50: 67 nM
PI3Kδ, IC50: 8.1 nM
       
PI3K/mTOR Inhibitor-1
PI3Kα, IC50: 20 nM
PI3Kβ, IC50: 376 nM
PI3Kγ, IC50: 204 nM
PI3Kδ, IC50: 46 nM
       
CHF-6523   
PI3Kδ
       
IHMT-PI3Kδ-372   
PI3Kδ, IC50: 14 nM
       
PI3K-IN-6
PI3Kα, IC50: 850 nM
PI3Kβ, IC50: 7.8 nM
 
PI3Kδ, IC50: 5.3 nM
       
PI3Kγ inhibitor 2  
PI3Kγ, Ki: 4 nM
        
PI3Kdelta inhibitor 1   
PI3Kδ, IC50: 1.3 nM
       
PI3K-IN-9   
PI3Kδ
       
PI3Kγ inhibitor 4
PI3Kα, IC50: 300 nM
 
PI3Kγ, IC50: 40 nM
        
PI3Kα-IN-6
PI3Kα
          
PI3K/mTOR Inhibitor-9
PI3Kα, IC50: 6.6 μM
PI3Kβ, IC50: >10 μM
PI3Kγ, IC50: 6.6 μM
PI3Kδ, IC50: 0.8 μM
       
PI3K-IN-33
PI3Kα, IC50: 11.73 μM
PI3Kβ, IC50: 6.09 μM
 
PI3Kδ, IC50: 11.18 μM
       
PI3Kδ-IN-10   
PI3Kδ, IC50: 2 nM
       
PI3Kα-IN-25
PI3Kα
          
TRPM7-IN-1        
PI3K
  
D-106669
PI3Kα, IC50: 0.129 μM
          
SN32976
PI3Kα, IC50: 15.1 nM
PI3Kβ, IC50: 461 nM
PI3Kγ, IC50: 110 nM
PI3Kδ, IC50: 134 nM
       99.49%
PI3Kα-IN-19
p110α
          
ATM Inhibitor-3        
PI3K
  
PI3Kδ-IN-11   
PI3Kδ, IC50: 27.5 nM
       
PI3K-IN-38
p110α, IC50: 0.541 μM
          
PI3Kδ/BET-IN-1   
PI3Kδ, IC50: 112 nM
       
NVP-CLR457
PI3Kα, IC50: 12 ± 1.5 nM
PI3Kβ, IC50: 8.3 ± 1.0 nM
PI3Kγ, IC50: 230 ± 31 nM
PI3Kδ, IC50: 8.3 ± 2.0 nM
       
TGX-155 
PI3Kβ
         
PI3K-IN-34
PI3Kα, IC50: 8.43 μM
PI3Kβ, IC50: 15.84 μM
 
PI3Kδ, IC50: 30.62 μM
       
ATM Inhibitor-4        
PI3K
  
PD-1/PD-L1-IN-54        
PI3K
  
PI3K/HDAC-IN-2
PI3Kα, IC50: 226 nM
PI3Kβ, IC50: 279 nM
PI3Kγ, IC50: 467 nM
PI3Kδ, IC50: 29 nM
       
PI3K/mTOR Inhibitor-3        
PI3K
  
PI3Kα-IN-5
PI3Kα, IC50: 0.7 nM
          
SU-11752  
p110γ, IC50: 1.1 μM
        
PP30  
p110γ, IC50: 0.68 μM
p110δ, IC50: 0.99 μM
       
(R)-IHMT-PI3Kδ-372   
PI3Kδ, IC50: 19 nM
       99.75%
IHMT-PI3K-315  
PI3Kγ, IC50: 4.0 nM
PI3Kδ, IC50: 9.1 nM
       
PI3Kδ-IN-22
PI3Kα, pKi: 7.3
PI3Kβ, pKi: 7.7
PI3Kγ, pKi: 6.5
PI3Kδ, pKi: 9.3
       
PI3Kα-IN-13
PI3Kα
          
(Rac)-AZD8186
PI3Kα, IC50: 35 nM
PI3Kβ, IC50: 4 nM
PI3Kγ, IC50: 675
PI3Kδ, IC50: 12
       
PI3K/mTOR Inhibitor-12
PI3Kα, IC50: 0.06 nM
          
Umbralisib R-enantiomer   
PI3Kδ
       99.52%
PI3Kγ ligand 1  
PI3Kγ
        
COX-2/PI3K-IN-2        
PI3K, IC50: 2.78 nM
  
MEK/PI3K-IN-2
PI3Kα, IC50: 107 ± 21 nM
PI3Kβ, IC50: 3880 ± 725 nM
PI3Kγ, IC50: 2567 ± 364 nM
PI3Kδ, IC50: 137 ± 7 nM
       
ATR-IN-15        
PI3K, IC50: 5131 nM
  
PH14
PI3Kα, IC50: 20.3 nM
          99.29%
PI3Kδ/γ-IN-3  
PI3Kγ, IC50: 16 nM
PI3Kδ, IC50: 1 nM
       
PP487
p110α, IC50: 0.046 μM
p110β, IC50: 0.24 μM
p110γ, IC50: 0.1 μM
p110δ, IC50: 0.027 μM
       
PI3Kδ-IN-20   
PI3Kδ, IC50: 6.4 nM
       
PI3Kα-IN-7
PI3Kα
PI3Kβ
         
PI3K-IN-35
PI3Kα, IC50: 13.98 μM
PI3Kβ, IC50: 7.22 μM
 
PI3Kδ, IC50: 10.94 μM
       
PI3Kα-IN-11
PI3Kα
          
PI3Kγ inhibitor 7
PI3Kα, IC50: 4768 nM
PI3Kβ, IC50: 878.1 nM
PI3Kγ, IC50: 3.42 nM
PI3Kδ, IC50: 355.2 nM
       
17β-Hydroxywortmannin        
PI3K, IC50: 0.5 nM
  
MEK/PI3K-IN-1
PI3Kα, IC50: 130 ± 13 nM
PI3Kβ, IC50: 1537 ± 188 nM
PI3Kγ, IC50: 2745 ± 485 nM
PI3Kδ, IC50: 236 ± 29 nM
       
PI3K/mTOR Inhibitor-8
PI3Kα, IC50: 0.46 nM
          
XJTU-L453
PI3Kα
          
Flupentixol
PI3Kα, IC50: 127 nM
          
IHMT-PI3K-455
PI3Kα, IC50: 6.717 μM
PI3Kβ, IC50: 42.04 nM
PI3Kγ, IC50: 7.1 nM
PI3Kδ, IC50: 0.57 nM
       
Isorhamnetin (Standard)        
PI3-K
  
PI3Kδ-IN-12
PI3Kα, pKi: 6.7
PI3Kβ, pKi: 6.4
PI3Kγ, pKi: 6.5
PI3Kδ, pIC50: 5.8
PI3Kδ, pKi: 8.0
       
PI3Kδ-IN-21
PI3Kα, IC50: 7034 nM
PI3Kβ, IC50: 1660 nM
 
PI3Kδ, IC50: 13.6 nM
       
PI3K/mTOR Inhibitor-14        
PI3K, IC50: 171.4 nM
  
PI3Kδ-IN-18   
PI3Kδ, IC50: 0.1 nM
       
PI3Kα-IN-14
PI3Kα, IC50: 0.14 nM
PI3Kβ, IC50: 25.89 nM
PI3Kγ, IC50: 2.45 nM
PI3Kδ, IC50: 5.69 nM
       
CXJ-2        
PI3K
  
COX-2/PI3K-IN-1        
PI3K, IC50: 1.14 nM
  
PI3Kα-IN-20
PI3Kα
          
PI3Kδ/γ-IN-2  
PI3Kγ, IC50: 4.3 nM
PI3Kδ, IC50: 1 nM
       
PI3Kα-IN-23
PI3Kα-H1047R
          
PI3K/mTOR Inhibitor-17
PI3Kα, IC50: 0.45 nM
          
PI3K-IN-10        
PI3K
  
TYM-3-98   
PI3Kδ, IC50: 7.1 nM
       
PI3Kδ-IN-23   
PI3Kδ, IC50: 0.27 nM
       
PI3Kα-IN-8
PI3Kα, IC50: 0.012 μM
PI3Kβ, IC50: 0.21 μM
PI3Kγ, IC50: 0.18 μM
PI3Kδ, IC50: 0.11 μM
       
PI3Kα-IN-1
PI3Kα, IC50: <0.5 nM
          
PI3K/VEGFR2-IN-1        
PI3K, IC50: 2.21 μM
  
LTURM 36 
PI3Kβ, IC50: 5.0 μM
 
PI3Kδ, IC50: 0.64 μM
       
Topoisomerase I/II inhibitor 3        
PI3K
  
mTOR inhibitor-13
PI3Kα, IC50: 119 nM
          
PI3Kα-IN-24
PI3Kα, IC50: 0.025 μM
          
mTOR inhibitor-17
PI3Kα, IC50: 1359 nM
          
PI3K-IN-54
p110α, IC50: 0.22 nM
p110β, IC50: 1.4 nM
 
p110δ, IC50: 0.38 nM
       
MIPS-9922 
PI3Kβ, IC50: 63 nM
 
PI3Kδ, IC50: 2200 nM
       
(S)-GSK-F1
PI3Kα, pIC50: 5.6
PI3Kβ, pIC50: 5.1
 
PI3Kδ, pIC50: 5.6
       
PI3Kγ inhibitor 1
PI3Kα, IC50: 10 μM
PI3Kβ, IC50: 10 μM
PI3Kγ, IC50: 100 nM
PI3Kδ, IC50: 100 nM
       
AS2541019   
p110δ
       
mTOR inhibitor-16
PI3Kα, IC50: 82 nM
          
AM-0687
PI3Kα, IC50: 17600 nM
PI3Kβ, IC50: 2840 nM
PI3Kγ, IC50: 3530 nM
PI3Kδ, IC50: 2.9 nM
       
TGX-115 
PI3Kβ, IC50: 0.13 μM
 
PI3Kδ, IC50: 0.63 μM
       
CAL-130 Racemate   
PI3Kδ
       
PIK-C98
PI3Kα, IC50: 0.59 μM
PI3Kβ, IC50: 1.64 μM
PI3Kγ, IC50: 0.74 μM
PI3Kδ, IC50: 3.65 μM
       
mTOR inhibitor-10
PI3Kα, IC50: 825 nM
          
CAL-130
p110α, IC50: 115 nM
p110β, IC50: 56 nM
p110γ, IC50: 6.1 nM
p110δ, IC50: 1.3 nM
       
PI3kδ inhibitor 1   
PI3Kδ, IC50: 3.8 nM